期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
利用XGBoost模型查明土地利用格局对行人交通事故严重程度的非线性影响
1
作者 刘琪琪 陈春 匡新晖 《科学技术与工程》 北大核心 2025年第3期1253-1261,共9页
土地利用与交通安全是城市地理和交通运输领域共同关注的热点,但目前关于土地利用对行人交通事故的影响研究多纳入建成环境统一框架,并多采用土地利用混合度或土地利用类型占比来衡量,缺乏对土地利用类型的细化研究,难以有效指导设计实... 土地利用与交通安全是城市地理和交通运输领域共同关注的热点,但目前关于土地利用对行人交通事故的影响研究多纳入建成环境统一框架,并多采用土地利用混合度或土地利用类型占比来衡量,缺乏对土地利用类型的细化研究,难以有效指导设计实践。以重庆市渝中区为例,基于兴趣点(point of interest,POI)数据对土地利用类型进行精细刻画,应用极致梯度提升树(extreme gradient boosting,XGBoost)模型,探究土地利用类型以及行人、道路条件、道路环境等对行人交通事故严重程度影响的非线性关系。研究发现:①土地利用类型对行人交通事故严重程度有重要作用,其中影响较大的分别是医院、住宅和教育用地,事故点缓冲区300 m内存在医院、居民小区以及教育用地对行人交通事故严重程度有降低作用;②弯道和弯坡道的道路线形处是严重行人交通事故的高发区;路段进出口处、窄路等路口路段处对行人交通事故严重程度有降低作用。研究结论可为精细化的土地利用规划与治理以降低行人交通事故严重程度提供一定的政策启示。 展开更多
关键词 土地利用 建成环境 极致梯度提升决策树(xgboost) 交通安全
在线阅读 下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
2
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
在线阅读 下载PDF
基于XGBoost的城市污水管道缺陷发生概率预测
3
作者 马辉 贺鹰霞 陈杨杨 《中国安全科学学报》 CAS CSCD 北大核心 2024年第11期163-171,共9页
为提高城市污水管道缺陷检测效率,减少地毯式检测带来的资源浪费,降低环境安全风险,利用极致梯度提升(XGBoost)模型预测城市污水管道缺陷发生概率。首先,统计分析污水管道缺陷成因,筛选出能够表征管道缺陷状况的关键性指标,作为XGBoost... 为提高城市污水管道缺陷检测效率,减少地毯式检测带来的资源浪费,降低环境安全风险,利用极致梯度提升(XGBoost)模型预测城市污水管道缺陷发生概率。首先,统计分析污水管道缺陷成因,筛选出能够表征管道缺陷状况的关键性指标,作为XGBoost模型的输入;其次,选择合适的目标函数和基学习器参数,利用网格搜索算法寻优基学习器的关键参数,完成模型训练和优化;最后,以广东省中山市某区域污水管网数据为例,验证XGBoost模型的有效性,根据模型输出寻找影响缺陷发生的主要因素和路径,并将区域内污水管网的缺陷发生概率划分出4个不同等级后进行可视化展示。结果表明:XGBoost模型在10折交叉验证下的曲线下面积(AUC)均值达到0.97,模型的预测准确率为93%;管道埋深、坡度和长度3个特征对管道缺陷发生概率变化的影响程度最高;当管长增加,坡度越大、埋深越浅,污水管道发生缺陷的概率会随之增长。 展开更多
关键词 极致梯度提升(xgboost) 城市污水管道 缺陷发生概率 决策树 预测模型
在线阅读 下载PDF
基于多模型Stacking融合的基坑测斜时序预测
4
作者 胡比澜 王洋洋 张永强 《浙江大学学报(工学版)》 北大核心 2025年第4期706-716,共11页
为了准确预测基坑倾斜变形,提出基于极致梯度提升(XGBoost)、长短期记忆(LSTM)和线性回归(LR)的堆叠多变量预测模型.利用XGBoost集成学习的优越性和双层LSTM算法预测传统基坑变形的准确度,提升模型的预测精度和泛化能力.在数据预处理阶... 为了准确预测基坑倾斜变形,提出基于极致梯度提升(XGBoost)、长短期记忆(LSTM)和线性回归(LR)的堆叠多变量预测模型.利用XGBoost集成学习的优越性和双层LSTM算法预测传统基坑变形的准确度,提升模型的预测精度和泛化能力.在数据预处理阶段,引入K最近邻(KNN)插补算法增加可有效利用的数据总量,使用深度学习模型Informer的时间信息处理方式,改善传统算法中有监督学习忽略时间序列数据不同时间间隔的问题.以杭州某在建基坑为工程案例,插补616条缺失数据,将时间信息转为3列时间点特征信息,使用所提模型进行基坑变形预测分析.已有实测数据验证表明,所提模型在预测基坑最大测斜位移及该位移点处深度时的训练精度和泛化能力相比双层LSTM模型及XGBoost模型均有较大提升,使用时间点特征的XGBoost模型比LSTM模型更适合预测对时间因素敏感的指标. 展开更多
关键词 时间序列分析 基坑测斜 双层LSTM 极致梯度提升(xgboost) 堆叠算法
在线阅读 下载PDF
基于多源地理数据的多维街道活力与建成环境非线性关系研究——以深圳市福田区为例
5
作者 段高祥 刘文凯 邢汉发 《地理科学》 北大核心 2025年第5期975-987,共13页
从多个维度感知街道活力并探究建成环境与多维街道活力之间的关系,是提升街道活力的基础。以深圳市福田区为研究区域,基于百度热力图数据、大众点评数据、POI数据,从社会、经济、文化3个维度测度街道活力,结合XGBoost和SHAP分析多维街... 从多个维度感知街道活力并探究建成环境与多维街道活力之间的关系,是提升街道活力的基础。以深圳市福田区为研究区域,基于百度热力图数据、大众点评数据、POI数据,从社会、经济、文化3个维度测度街道活力,结合XGBoost和SHAP分析多维街道活力与建成环境间的非线性关系。结果表明:①不同维度的街道活力在空间分布上存在明显差异,社会、经济活力整体空间分布呈现多中心点状空间结构,文化活力则呈现多中心片状结构,社会活力与经济活力空间分布差异小,经济活力与文化活力空间分布差异大;②建成环境显著影响了多维街道活力,其中,功能密度、最近商圈距离、最近地铁站点距离、建筑密度4个建成环境指标对多维街道活力的重要性程度更高,且累积解释力度均达到了60%;③建成环境对多维街道活力的非线性影响及阈值效应明显,且对不同维度街道活力的影响共性与差异并存。多维街道活力与功能密度、建筑密度、容积率、公交站点密度整体上均呈现正相关趋势,与最近地铁站点距离整体上均呈现负相关趋势;高功能混合度、高绿视率与文化活力存在正相关趋势,而与社会和经济活力存在负相关趋势。研究结果可为提升街道活力、优化城市资源配置以及促进城市可持续发展提供依据。 展开更多
关键词 多维街道活力 多源地理数据 建成环境 极致梯度提升树(xgboost) SHAP
在线阅读 下载PDF
基于机器学习的公交驾驶员事故风险识别及影响因素研究 被引量:4
6
作者 朱彤 秦丹 +2 位作者 魏雯 任杰 冯移冬 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期23-30,共8页
为从公交驾驶员群体中识别出易发生事故的风险公交驾驶员,结合某市公交公司营运安全管理系统数据库、百度应用程序接口(API)及网络爬取技术,并应用K近邻算法补充缺失值,获取42条线路及1893名驾驶员的数据;基于驾驶员、车辆、线路特征、... 为从公交驾驶员群体中识别出易发生事故的风险公交驾驶员,结合某市公交公司营运安全管理系统数据库、百度应用程序接口(API)及网络爬取技术,并应用K近邻算法补充缺失值,获取42条线路及1893名驾驶员的数据;基于驾驶员、车辆、线路特征、违规行为、事故、管理等基本特征变量构造派生变量;采用包括递归特征消除、有惩罚项的逻辑回归、随机森林的集成方法选择特征;采用极致梯度提升(XGBoost)等6种机器方法分别建立分类模型,并采用贝叶斯方法优化超参数。结果表明:在构建的6个分类模型中,XGBoost方法构建的模型其受试者工作特征(ROC)曲线下的面积(AUC)评估结果最佳;运用贝叶斯方法优化模型,可以在一定程度上提升ROC的AUC指标;对于风险公交驾驶员预测准确率达到98.66%,运营单位还可以根据自身情况权衡虚报率与命中率代价。此外,车辆服役时间、违规次数等特征对于事故风险具有明显的非线性影响。 展开更多
关键词 风险公交驾驶员 机器学习 事故风险 极致梯度提升(xgboost) SHapley加性解释(SHAP)值
在线阅读 下载PDF
建成环境对老年行人出行安全的非线性影响研究——以重庆市渝中区为例 被引量:4
7
作者 陈春 唐弋 《科学技术与工程》 北大核心 2023年第16期7112-7119,共8页
建成环境影响出行安全的研究是城市地理与交通运输领域共同关注的前沿热点。但现有关于建成环境与出行安全的研究多为线性或广义线性的探讨,缺少非线性关系下的研究,且缺乏对老年行人的关注。以重庆市渝中区为例,从密度、多样性、目的... 建成环境影响出行安全的研究是城市地理与交通运输领域共同关注的前沿热点。但现有关于建成环境与出行安全的研究多为线性或广义线性的探讨,缺少非线性关系下的研究,且缺乏对老年行人的关注。以重庆市渝中区为例,从密度、多样性、目的地可达性、公共交通临近度、设计5个维度建立建成环境变量体系,运用极端梯度提升模型(XGBoost)探究建成环境变量与老年行人出行安全之间的非线性关系。结果表明:考虑非线性效应的XGBoost比普通最小二乘法,拟合效果有明显提升;整体效应分析中,密度要素是影响老年行人出行安全最重要的因素,单个变量中人行天桥数量、地下通道数量的贡献值最高;独立效应分析中,建成环境相关要素与老年行人事故频率均具有明显的非线性关系与阈值效应。最后,根据研究结果提出建成环境的优化策略,为构建老年人友好的出行环境提供依据。 展开更多
关键词 建成环境 交通事故 极限梯度提升决策树(xgboost) 非线性 老年人
在线阅读 下载PDF
基于机器学习的星载短波红外CO_(2)柱浓度估算 被引量:8
8
作者 李静波 张莹 盖荣丽 《中国环境科学》 EI CAS CSCD 北大核心 2023年第4期1499-1509,共11页
利用OCO-2卫星遥感数据、全球碳柱总量观测网(TCCON)站观测数据、NDVI归一化植被指数数据、ERA5大气数据,采用决策树和集成学习(XGBoost、普通随机森林、极端随机森林、梯度提升)对二CO_(2)平均柱浓度进行预测.通过相关性分析、特征选... 利用OCO-2卫星遥感数据、全球碳柱总量观测网(TCCON)站观测数据、NDVI归一化植被指数数据、ERA5大气数据,采用决策树和集成学习(XGBoost、普通随机森林、极端随机森林、梯度提升)对二CO_(2)平均柱浓度进行预测.通过相关性分析、特征选择与特征提取,建立模型预测CO_(2)平均柱浓度,再与TCCON站点的地基观测数据进行比对.通过分析不同模型(决策树、XGBoost、普通随机森林、极端随机森林、梯度提升)预测的结果,发现使用极端随机森林回归模型预测CO_(2)平均柱浓度的精度最高,R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MRE)分别为:0.953、0.492×10^(-6)、0.260×10^(-6)、0.063%,其余模型次之,因此对极端随机森林回归模型的预测性能随自身参数的影响进行了分析,结果表明,在误差允许的范围内(±2×10^(-6)),极端随机森林回归模型和梯度提升回归模型预测的准确率一样,都为98.10%.由于CO_(2)的背景浓度较高,而边界层内CO_(2)浓度的空间差异相对较小,因此需要进一步缩小误差的范围,在±1×10^(-6)误差范围内,极端随机森林回归模型和梯度提升预测的准确率分别为91.82%和90.51%.所以采用极端随机森林算法预测CO_(2)柱浓度的结果更好,精度更高,符合CO_(2)预测的精度要求. 展开更多
关键词 二氧化碳平均柱浓度 集成学习 极端随机森林 梯度提升 决策树 xgboost 短波红外
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部