期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于WOA-XGBoost的膜下滴灌棉花蒸散量预测模型 被引量:3
1
作者 曹缘 王振华 +3 位作者 张继红 刘宁宁 李文昊 张金珠 《排灌机械工程学报》 CSCD 北大核心 2024年第12期1280-1286,共7页
为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花... 为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花蒸散量的关键因素,依据相关系数排序构建输入组合,代入WOA-XGBoost模型进行模拟.并与XGBoost,SVM,WOA-SVM和PSO-XGBoost预测结果进行对比验证.结果表明:太阳辐射、最低气温、最高气温、相对湿度、风速和土壤温度与棉花蒸散量相关性较大,其MIC值分别为0.722,0.546,0.496,0.475,0.379和0.219,基于上述6个因素构建的WOA-XGBoost模型综合性能最优,R^(2),MAE,RMSE和MAPE分别为0.922,0.038 mm/h,0.064 mm/h和0.221,预测精度均优于相同输入参数下的其他4种模型.因此,推荐使用WOA-XGBoost模型模拟相关因素与膜下滴灌棉花蒸散量之间的非线性关系.研究可为精确计算膜下滴灌棉花蒸散量提供科学依据,为灌溉决策优化提供参考. 展开更多
关键词 蒸散量 棉花 极端梯度提升树模型 鲸鱼优化算法 预测模型
在线阅读 下载PDF
建成环境与共享单车流率的非线性关系研究 被引量:8
2
作者 路庆昌 徐标 崔欣 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期100-110,共11页
共享单车流率的大小体现了城市空间环境内车辆盈缺的程度,理解其变化及其诱因对于城市单车的调度具有重要意义。由于出行目的和外界环境因素的复杂多变,共享单车流率和建成环境特征之间的关系很难通过具有线性假设的统计学模型来解析。... 共享单车流率的大小体现了城市空间环境内车辆盈缺的程度,理解其变化及其诱因对于城市单车的调度具有重要意义。由于出行目的和外界环境因素的复杂多变,共享单车流率和建成环境特征之间的关系很难通过具有线性假设的统计学模型来解析。基于此,本研究利用上海市中心城区的共享单车数据,基于极端梯度提升树模型(XG‐Boost)和机器学习的解释性方法部分依赖图(PDP)来探究建成环境对共享单车流率的贡献度和非线性影响,以及流率的非线性模式在工作日和周末的变化。结果显示,特征重要度和非线性机制在两个时段差异化显著。居住人口密度、教育设施密度和住宅设施密度对工作日单车流率的解释度较高,分别为 19.18%、13.16% 和 12.92%,并且具有明显的阈值效应。其中居住人口密度和教育设施密度对于单车净流出率具有正向影响,分别在 11 600 人/km^(2)和 8 个/km^(2)达到最大;住宅设施密度对单车净流出率具有负向影响,对应的阈值为 40 个/km^(2)。各变量对周末单车流率的解释度差异较小,但非线性关系仍不可忽视。具体来说,到市中心的距离和公交线数密度对周末单车净流入率正向影响显著,有效范围为 18~23 km和28~52 条/km^(2);容积率对周末单车净流出率正向影响范围在 0.89~1.41。上述发现表明 XGBoost 模型可以有效弥补传统回归模型(MLR)线性假设的偏见,建成环境特征贡献度和影响范围的揭示也为管理部门针对具有不同建成环境水平地区的单车调度提供决策建议。 展开更多
关键词 共享单车流率 建成环境 极端梯度提升树模型 非线性 调度管理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部