期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
基于极端梯度提升算法的地震同相轴自动识别
1
作者 黄建平 张若枫 +5 位作者 高睿语 李亚林 段文胜 陈飞旭 郭廷超 潘成磊 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期44-56,共13页
在常规地震同相轴识别方法基础上,通过引入极端梯度提升算法(XGBoost)智能化策略,并结合地震数据相邻道相似性特征,发展一种基于极端梯度提升算法的地震同相轴自动识别技术方法。在编程实现方法的基础上,通过简单层状模型和复杂Marmous... 在常规地震同相轴识别方法基础上,通过引入极端梯度提升算法(XGBoost)智能化策略,并结合地震数据相邻道相似性特征,发展一种基于极端梯度提升算法的地震同相轴自动识别技术方法。在编程实现方法的基础上,通过简单层状模型和复杂Marmousi模型模拟的记录进行测试,验证方法的正确性。对含噪音数据和实际资料中的同相轴进行识别测试,同时进行单道对比定量分析以及不同信噪比情况下算法预测结果精度对比。结果表明:新方法对含噪数据和实际资料均具有较好的适应性;在低信噪比(-6.98 dB)情况下,同相轴的查准率仍可超过90%。 展开更多
关键词 同相轴拾取 机器学习 特征拾取 极端梯度提升算法
在线阅读 下载PDF
基于极端梯度提升的PEMFC长短期老化趋势预测 被引量:1
2
作者 王艳琴 谢卓峰 +2 位作者 韩国鹏 张杲 郭爱 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期232-239,共8页
为了同时实现准确的燃料电池长短期老化趋势预测,提出基于极端梯度提升(XGBoost)的PEMFC老化趋势预测模型。首先,对燃料电池老化实验数据进行降噪预处理,利用双指数对电压恢复特性进行建模;然后,基于XGBoost算法,构建4种提前多步短期老... 为了同时实现准确的燃料电池长短期老化趋势预测,提出基于极端梯度提升(XGBoost)的PEMFC老化趋势预测模型。首先,对燃料电池老化实验数据进行降噪预处理,利用双指数对电压恢复特性进行建模;然后,基于XGBoost算法,构建4种提前多步短期老化预测模型以及考虑恢复性的长期预测策略,并利用粒子群算法优化模型的参数;最后,比较4种短期预测模型的预测结果,并将最优的预测模型应用于长期老化预测策略。典型数据实验表明:采用多输入多输出策略(MIMO)的XGBoost预测模型具有最好的预测性能,其提前3步预测的均方根误差为0.00465、平均相对误差为0.00219平均运算时间为3.48 s;基于MIMO-XGBoost且考虑恢复性的长期预测策略剩余使用寿命(RUL)的平均相对误差为7.74%,显著优于自回归差分移动平均方法。 展开更多
关键词 燃料电池 老化 预测 剩余使用寿命 极端梯度提升
在线阅读 下载PDF
麻雀搜索算法优化极端梯度提升的扩频码研究
3
作者 梁智儒 边东明 张更新 《光通信研究》 北大核心 2024年第6期108-113,共6页
【目的】直接序列扩频系统(DSSS)在军事和民用通信中都得到了广泛应用,因其具有对各种常见干扰较强的抵抗能力和安全性较高等优点,且易于实现,被广泛应用于码分多址(CDMA)之中。然而,在非协作通信的应用场景中,检测DSSS信号,对DSSS信号... 【目的】直接序列扩频系统(DSSS)在军事和民用通信中都得到了广泛应用,因其具有对各种常见干扰较强的抵抗能力和安全性较高等优点,且易于实现,被广泛应用于码分多址(CDMA)之中。然而,在非协作通信的应用场景中,检测DSSS信号,对DSSS信号参数进行估计,甚至截获信息,都是文章需要考虑的问题。在DSSS中,正确识别所使用的扩频序列是正确解扩的重要前提条件。针对低信噪比DSSS信号扩频码识别成功率低的问题,文章通过结合m序列的三阶相关函数(TCF)峰值特性,在降噪预处理的前提下,通过功率谱二次处理识别DSSS信号的伪码周期作为先验信息,将扩频码的识别问题具体成为一个峰值检测分类的问题,进而对峰值识别分类进行了研究。【方法】文章提出了使用麻雀搜索算法(SSA)优化极端梯度提升(XGBOOST)的DSSS信号三阶相关峰值分类方法,提高了对m序列分类识别的准确率。【结果】通过在不同信噪比下对比常规峰值检测和决策树分类方法以及对比不同序列周期的识别分类准确率,仿真结果表明,经过预处理的SSA XGBOOST扩频码识别分类方法比起常规机器学习与峰值检测方法分类识别成功率更高,在高序列周期下性能逐步提升。【结论】文章所提方法能在较低的信噪比条件下更准确地识别分类扩频码m序列。 展开更多
关键词 M序列 三阶相关函数 麻雀搜索算法 优化极端梯度提升
在线阅读 下载PDF
基于极端梯度提升树模型的工程项目安全管理研究
4
作者 陈华伟 谭琳 于强 《科技创新与应用》 2024年第1期119-122,共4页
工程项目安全管理是建筑工程项目核心内容,部分建筑企业对效益的过分追求,导致工程项目经常出现事故。深入研究工程项目安全管理,有利于提高工程质量降低事故发生的概率。如何对项目安全进行管理,如何掌握项目实施过程中出现的各种风险... 工程项目安全管理是建筑工程项目核心内容,部分建筑企业对效益的过分追求,导致工程项目经常出现事故。深入研究工程项目安全管理,有利于提高工程质量降低事故发生的概率。如何对项目安全进行管理,如何掌握项目实施过程中出现的各种风险因素,成为每一个项目管理者目前亟待解决的问题。该文通过运用极端梯度提升树模型对工程项目安全管理进行研究,建立安全管理模型并确立安全等级,为工程管理者对安全管理的决策提供依据。 展开更多
关键词 工程项目 安全管理 安全指标 极端梯度提升 建筑工程
在线阅读 下载PDF
极端梯度提升与随机森林融合的天然气露点预测方法 被引量:2
5
作者 熊伟 何彦霖 +2 位作者 宋伟 张厚望 尹爱军 《装备环境工程》 CAS 2022年第6期133-140,共8页
目的解决目前水露点数据多为人工采用测量仪器测得,时效性低且成本高昂的问题。方法建立一种基于极端梯度提升(XGBoost)和随机森林(RF)的天然气水露点预测方法。采用XGBoost方法对所有监测工艺参数进行分析,筛选出主要影响水露点的关键... 目的解决目前水露点数据多为人工采用测量仪器测得,时效性低且成本高昂的问题。方法建立一种基于极端梯度提升(XGBoost)和随机森林(RF)的天然气水露点预测方法。采用XGBoost方法对所有监测工艺参数进行分析,筛选出主要影响水露点的关键工艺特征参数,以排除无关特征参数对预测的干扰。建立RF预测模型,输入关键特征集参数,实现对水露点的实时预测。以重庆气矿某脱水监测系统监测数据与生产数据为例,对所提预测方法进行对比分析验证。结果相较于XGBoost、SVM等预测方法,RF模型具有最佳的预测性能,且经过XGBoost特征选择后,RF预测结果的MAE值降低了0.0169℃,RMSE值降低了0.0146℃。结论基于极端梯度提升与随机森林融合的水露点预测方法具有更优的预测精度与鲁棒性,对指导脱水现场生产具有积极作用。 展开更多
关键词 三甘醇脱水装置 天然气水露点 极端梯度提升(xgboost) 特征提取 随机森林(RF)
在线阅读 下载PDF
LSTM与XGBoost混合模型在风力发电功率预测中的应用
6
作者 陈大为 张玮 慕龙 《无线互联科技》 2025年第1期63-66,共4页
文章提出了一种基于LSTM与XGBoost的混合模型用于风力发电功率预测。主要研究了LSTM模型与XGBoost模型的融合方法,通过LSTM捕捉序列数据的长期依赖关系,再利用XGBoost进行非线性拟合以提升预测精度。实验采用国家电网新能源发电预测大... 文章提出了一种基于LSTM与XGBoost的混合模型用于风力发电功率预测。主要研究了LSTM模型与XGBoost模型的融合方法,通过LSTM捕捉序列数据的长期依赖关系,再利用XGBoost进行非线性拟合以提升预测精度。实验采用国家电网新能源发电预测大赛提供的公开数据集,使用平均绝对误差和决定系数等指标对模型性能进行评估。实验结果表明,文章所提出的混合模型相比标准LSTM模型在预测精度和拟合能力上均表现出显著的优势。 展开更多
关键词 长短期记忆 极端梯度提升 风力发电 功率预测
在线阅读 下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
7
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升树(xgboost)算法
在线阅读 下载PDF
基于PSO-CNN-XGBoost水下柱形装药峰值超压预测 被引量:1
8
作者 刘芳 李士伟 +1 位作者 卢熹 郭策安 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1602-1612,共11页
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extr... 为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting,XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。 展开更多
关键词 水下柱形装药 长径比 爆距 峰值超压 粒子群优化算法 一维卷积神经网络 极端梯度提升
在线阅读 下载PDF
基于WOA-VMD-XGBoost的混凝土坝变形预测 被引量:1
9
作者 常留红 李晨玉 +3 位作者 曾子彬 尹光景 赵芃芃 薛雄 《水利水运工程学报》 CSCD 北大核心 2024年第3期146-157,共12页
建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根... 建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根据最佳参数组合多尺度分解变形数据,得到多个不同特征尺度的本征模态函数(IMF)。通过重构分量为新分量,将新分量分别输入极端梯度提升(XGBoost)模型中进行预测,叠加各预测结果得到最终预测值。基于山口岩碾压混凝土拱坝变形监测数据,开展支持向量回归机(SVR)、随机森林(RF)、XGBoost、WOA-VMD-XGBoost等4种模型的精度、泛化能力对比研究。结果表明:相比于单一预测模型,组合模型有效挖掘了变形信号多尺度特征,降低了非线性、非平稳性对模型性能的影响,在精度、泛化能力中表现出更高性能。该组合模型为大坝变形监测提供了理论依据和应用参考。 展开更多
关键词 混凝土坝 变形预测 鲸鱼优化算法 包络熵 变分模态分解 极端梯度提升
在线阅读 下载PDF
基于特征选择的GS-KCV-XGBoost露天金属矿爆破块度预测模型
10
作者 赵颖 岳中文 +3 位作者 薛克军 陈佳瑶 蒋昊洋 王鹏 《工程爆破》 CSCD 北大核心 2024年第6期168-177,共10页
为准确预测爆破块度,通过随机森林算法和皮尔逊相关性分析筛选出了影响爆破块度的关键因素,再输入到利用网格搜索法(GS)和K折交叉验证法(KCV)寻优处理后的极端梯度提升树(XGBoost)算法中,建立了一种基于特征选择的GS-KCV-XGBoost岩石爆... 为准确预测爆破块度,通过随机森林算法和皮尔逊相关性分析筛选出了影响爆破块度的关键因素,再输入到利用网格搜索法(GS)和K折交叉验证法(KCV)寻优处理后的极端梯度提升树(XGBoost)算法中,建立了一种基于特征选择的GS-KCV-XGBoost岩石爆破块度预测模型。研究结果表明:本模型比常见的随机森林回归模型、GS-XGB模型和GS-SVM模型预测效果更优,模型可靠性高,将本模型应用到实际工程中,得到的预测值和真实值相近,R^(2)为0.95、MAE为7.961、RMSE为13.596,能实现爆破块度的爆前预测,有较高的工程应用价值。 展开更多
关键词 爆破块度预测 极端梯度提升 特征选择 网格搜索 K折交叉验证
在线阅读 下载PDF
考虑噪声影响的MEMD-XGBoost方法在GNSS高程时间序列建模和预测中的应用
11
作者 鲁铁定 李祯 贺小星 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第6期149-158,共10页
全球导航卫星系统(global navigation satellite system,GNSS)高程时间序列研究有助于监测和分析地壳板块运动,可以为研究人员判断区域运动趋势提供依据。基于经验模态分解和极端梯度提升算法构建了MEMD-XGBoost模型来预测分析GNSS高程... 全球导航卫星系统(global navigation satellite system,GNSS)高程时间序列研究有助于监测和分析地壳板块运动,可以为研究人员判断区域运动趋势提供依据。基于经验模态分解和极端梯度提升算法构建了MEMD-XGBoost模型来预测分析GNSS高程时间序列。为了验证模型的预测性能,实验选取8个GNSS站高程时间序列数据进行预测实验,特征构造结果显示,多次经验模态分解可以准确地提取原始时间序列信息,提供有效特征。建模结果表明,MEMD-XGBoost模型可以有效改善数据质量。预测结果表明,MEMD-XGBoost模型预测结果具有较高的精度和准确率,误差离散程度较小,模型具有较强的稳定性和鲁棒性,可以较好地预测出GNSS站高程方向的运动趋势和季节性变化。因此,该模型可以应用于GNSS高程时间序列建模和预测研究。 展开更多
关键词 GNSS时间序列 经验模态分解 极端梯度提升 建模 预测
在线阅读 下载PDF
基于STL-XGBoost-NBEATSx的小时天然气负荷预测
12
作者 邵必林 任萌 田宁 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期170-179,共10页
小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boo... 小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。 展开更多
关键词 天然气负荷预测 小时影响因素 极端梯度提升 可解释性 NBEATSx 组合模型
在线阅读 下载PDF
基于改进XGBoost的带式输送机驱动系统健康状态评估研究 被引量:1
13
作者 桂彬彬 周建平 +2 位作者 万晓静 肖鹿 周志超 《煤炭技术》 CAS 2024年第8期230-234,共5页
针对现有的带式输送机驱动系统健康状态评估方法存在数据分布不均衡、评估指标过多存在冗余性,以及采用单一算法寻找全局最优能力较弱等问题,提出一种基于改进粒子群优化算法(IPSO)优化极端梯度提升算法(IPSO-XGBoost)的带式输送机驱动... 针对现有的带式输送机驱动系统健康状态评估方法存在数据分布不均衡、评估指标过多存在冗余性,以及采用单一算法寻找全局最优能力较弱等问题,提出一种基于改进粒子群优化算法(IPSO)优化极端梯度提升算法(IPSO-XGBoost)的带式输送机驱动系统驱动系统健康状态评估方法。通过综合相关系数表征带式输送机驱动系统监测参数之间的相关关系,进而选择合适健康状态评估的指标,通过IPSO算法寻找XGBoost模型的最优参数配置,并将最优参数自动输入XGBoost评估模型进行训练,实现了对带式数据驱动系统健康状态评估。通过实验结果表明所提出的模型能够准确评估带式输送机驱动系统的健康状态。 展开更多
关键词 带式输送机 驱动系统 综合相关系数 粒子群优化算法 极端梯度提升算法 健康状态评估
在线阅读 下载PDF
基于DE-XGBoost的短期风电功率预测 被引量:1
14
作者 张健 田海 《信息技术》 2024年第7期136-142,共7页
风电功率预测可为电力系统安全稳定运行提供重要的决策参考,因此研究如何提高风电功率预测精度具有重要意义。针对短期风电功率预测精度的问题,提出一种基于差分进化算法(DE)优化极端梯度提升树的组合预测模型(DE-XGBoost)。利用收敛速... 风电功率预测可为电力系统安全稳定运行提供重要的决策参考,因此研究如何提高风电功率预测精度具有重要意义。针对短期风电功率预测精度的问题,提出一种基于差分进化算法(DE)优化极端梯度提升树的组合预测模型(DE-XGBoost)。利用收敛速度快、优化效果好、复杂性低的差分进化算法对XGBoost的模型参数进行优化,实现对风电功率的准确预测。仿真结果证明,与其他预测模型相比,DE-XGBoost模型预测精度更高,泛化能力更强,可为风电调度运行提供详实的数据。 展开更多
关键词 风电功率预测 预测精度 差分进化算法 极端梯度提升 组合模型
在线阅读 下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
15
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
在线阅读 下载PDF
基于WOA-XGBoost的膜下滴灌棉花蒸散量预测模型
16
作者 曹缘 王振华 +3 位作者 张继红 刘宁宁 李文昊 张金珠 《排灌机械工程学报》 CSCD 北大核心 2024年第12期1280-1286,共7页
为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花... 为了科学准确地预测膜下滴灌棉花蒸散量,基于鲸鱼优化算法(whale optimization algorithm,WOA)和极端梯度提升树(XGBoost),提出了WOA-XGBoost棉花蒸散量预测模型.采用最大互信息系数(maximal information coefficient,MIC)筛选影响棉花蒸散量的关键因素,依据相关系数排序构建输入组合,代入WOA-XGBoost模型进行模拟.并与XGBoost,SVM,WOA-SVM和PSO-XGBoost预测结果进行对比验证.结果表明:太阳辐射、最低气温、最高气温、相对湿度、风速和土壤温度与棉花蒸散量相关性较大,其MIC值分别为0.722,0.546,0.496,0.475,0.379和0.219,基于上述6个因素构建的WOA-XGBoost模型综合性能最优,R^(2),MAE,RMSE和MAPE分别为0.922,0.038 mm/h,0.064 mm/h和0.221,预测精度均优于相同输入参数下的其他4种模型.因此,推荐使用WOA-XGBoost模型模拟相关因素与膜下滴灌棉花蒸散量之间的非线性关系.研究可为精确计算膜下滴灌棉花蒸散量提供科学依据,为灌溉决策优化提供参考. 展开更多
关键词 蒸散量 棉花 极端梯度提升树模型 鲸鱼优化算法 预测模型
在线阅读 下载PDF
基于PCA-WOA-XGBoost的露天矿山爆破振动峰值振速预测
17
作者 张文涛 汪海波 +4 位作者 高朋飞 王梦想 吕闹 杨帆 程兵 《工程爆破》 CSCD 北大核心 2024年第6期155-167,177,共14页
为提高爆破振动峰值振速预测的精度,提出了一种主成分分析(PCA)特征降维条件下,基于鲸鱼算法(WOA)优化极端梯度提升算法(PCA-WOA-XGBoost)的爆破振动峰值振速预测模型。以长九露天建材矿开采爆破振动监测数据为依据,首先利用主成分分析... 为提高爆破振动峰值振速预测的精度,提出了一种主成分分析(PCA)特征降维条件下,基于鲸鱼算法(WOA)优化极端梯度提升算法(PCA-WOA-XGBoost)的爆破振动峰值振速预测模型。以长九露天建材矿开采爆破振动监测数据为依据,首先利用主成分分析对11个峰值振速影响因素降维处理得到4个主成分,计算主成分的得分作为预测模型输入特征,然后使用鲸鱼算法对极端梯度提升算法的超参数进行寻优,将最优超参数输入到预测模型中进行训练、测试和评估。结果表明:使用主成分分析对初始特征降维处理能有效减少信息冗余,提升预测准确度;使用鲸鱼优化算法对XGBoost算法初始超参数进行寻优,改善了人工选择超参数导致模型过拟合的问题;PCA-WOA-XGBoost模型预测结果的平均绝对相对误差为14.59%,在7种预测模型中最低,具有更高的预测精度,给多因素影响下爆破振动峰值振速预测提供了参考。 展开更多
关键词 PPV预测 极端梯度提升算法 主成分分析 鲸鱼优化算法
在线阅读 下载PDF
融合SHAP和TSO-XGBoost模型的水路货运量预测
18
作者 温泉 余玉欢 +1 位作者 庄尚德 牟军敏 《水利水运工程学报》 CSCD 北大核心 2024年第6期86-96,共11页
水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时... 水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时间粒度不统一与缺失问题,利用层次聚类和SHAP值的可解释性综合筛选关键影响因素特征序列,降低预测模型输入数据的维度和规模,引入Halton低差异序列和准反射学习策略(QRBL)大幅提升金枪鱼群优化算法(TSO)的寻优效能,增强TSO算法对极限梯度提升(XGBoost)模型中决策树数量、决策树的深度、学习速率等决定模型拟合能力的超参组合寻优效果。结果表明,新模型预测精度显著优于对比模型,可更好地适用于多特征影响因素下的水路货运量预测研究。 展开更多
关键词 金枪鱼群优化算法(TSO) 极限梯度提升(xgboost) 水路货运量
在线阅读 下载PDF
基于贝叶斯优化XGBoost的短期风功率预测
19
作者 杨曼柔 田海 《电子器件》 CAS 2024年第5期1389-1395,共7页
针对风电场输出功率不稳定导致风功率预测精度低的现象,提出一种基于贝叶斯优化极端梯度提升(BOA_XGBoost)的短期风功率预测模型。将极端梯度提升(XGBoost)、支持向量机(SVM)、核非线性回归(KNR)三个基础预测模型以及贝叶斯优化后的极... 针对风电场输出功率不稳定导致风功率预测精度低的现象,提出一种基于贝叶斯优化极端梯度提升(BOA_XGBoost)的短期风功率预测模型。将极端梯度提升(XGBoost)、支持向量机(SVM)、核非线性回归(KNR)三个基础预测模型以及贝叶斯优化后的极端梯度提升(BOA_XGBoost)、支持向量机(BOA_SVM)、核非线性回归(BOA_KNR)进行对比,通过内蒙古自治区某风电场的实测数据对六种预测模型进行验证,结果表明BOA_XGBoost模型预测效果最佳,有效改善了风功率预测效果,提高了风电并网运行的安全性。 展开更多
关键词 风功率预测 贝叶斯优化 极端梯度提升 支持向量机 核非线性回归
在线阅读 下载PDF
基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法
20
作者 陆继忠 彭思敏 李晓宇 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期2972-2982,共11页
准确评估锂离子电池健康状态(state of health,SOH)对保证电动汽车的安全稳定运行至关重要。然而,传统SOH估计方法在有效提取健康特征(health features,HFs)和依赖大量特征测试数据上面临一些挑战。为此,本文提出一种基于多特征量分析... 准确评估锂离子电池健康状态(state of health,SOH)对保证电动汽车的安全稳定运行至关重要。然而,传统SOH估计方法在有效提取健康特征(health features,HFs)和依赖大量特征测试数据上面临一些挑战。为此,本文提出一种基于多特征量分析和长短期记忆(long short-term memory,LSTM)-极端梯度提升(eXtreme gradient boosting,XGBoost)模型的锂离子电池SOH估计方法。首先,为准确描述电池的老化机理,从电池充电数据中提取关于时间、能量、IC三大类共6个HFs。考虑到同类型HFs之间存在大量冗余信息,采用一种基于双相关性的特征处理方法,筛选出可准确表征电池退化趋势的组合HFs。其次,针对传统SOH估计模型需要大量HFs测试数据的问题,提出一种基于LSTM-XGBoost的SOH估计模型。在该模型中,采用LSTM算法来预测电池剩余循环次数的HFs数据。同时,为解决LSTM模型进行HFs预测时计算效率不高的问题,采用LSTMXGBoost模型进行电池SOH估计。利用NASA电池数据集进行验证,结果表明,所提出方法在不同测试数据量下能准确估计锂电池的SOH,且均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。 展开更多
关键词 锂离子电池 健康状态 特征分析 长短期记忆神经网络 极端梯度提升
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部