期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于机器学习的氢化丁腈橡胶力学性能预测模型
1
作者 丁瀚林 赵骞 +3 位作者 张洁 孙思嘉 陈皓哲 陈鹏 《安徽大学学报(自然科学版)》 北大核心 2025年第3期90-99,共10页
氢化丁腈橡胶(HNBR)力学性能与橡胶配方和加工工艺密切相关.为探究材料配方与工艺对氢化丁腈橡胶力学性能的影响规律,笔者收集了32篇公开报道文献中的313份实验研究数据,提取了各文献中的体系配方、硫化工艺、橡胶拉伸强度数据,设计了... 氢化丁腈橡胶(HNBR)力学性能与橡胶配方和加工工艺密切相关.为探究材料配方与工艺对氢化丁腈橡胶力学性能的影响规律,笔者收集了32篇公开报道文献中的313份实验研究数据,提取了各文献中的体系配方、硫化工艺、橡胶拉伸强度数据,设计了极端梯度提升模型(XGBoost)与类别增强型提升模型(CatBoost)2种机器学习模型.首先对输入特征进行独热编码,之后采用2种机器学习方法进行训练,比较2种模型的预测精度、泛化能力,并进行特征重要性分析.2种模型的预测精度均超过0.92.特征重要性分析表明,炭黑含量和交联剂含量为关键的工艺参数,但2种模型描述的特征重要性比率存在差异.研究结果对研究氢化丁腈橡胶的工艺配方设计和发展机器学习技术在橡胶材料领域的应用具有重要的探索意义. 展开更多
关键词 氢化丁腈橡胶 机器学习 极端梯度提升模型 类别增强型提升模型 力学性能
在线阅读 下载PDF
基于XGBoost的以太坊交易智能定价模型 被引量:1
2
作者 冯云霞 薛蓉蓉 《计算机工程与应用》 CSCD 北大核心 2022年第20期263-269,共7页
以太坊采用交易收费的策略来保证计算资源的合理利用,而由于涉及智能合约的交易消耗计算资源差别较大,引入Gas机制。以太坊用户在发起交易时需自主设置Gas总量和Gas价格,而矿工基于利益最大化的原则,优先选择Gas价格高的交易。Gas价格... 以太坊采用交易收费的策略来保证计算资源的合理利用,而由于涉及智能合约的交易消耗计算资源差别较大,引入Gas机制。以太坊用户在发起交易时需自主设置Gas总量和Gas价格,而矿工基于利益最大化的原则,优先选择Gas价格高的交易。Gas价格设置高则打包时间短,反之则时间长。由于交易的价格由交易发起者自主确定,这使得需要打包的交易的Gas价格可能相差较大,因而交易共识时间难以掌握。因此,现有的交易机制并不能平衡交易Gas成本和共识时间之间的冲突。为了解决上述问题,对以太坊交易机制进行了研究,分析影响Gas价格的因子,通过网格搜索算法对极端梯度增强模型(extreme gradient boosting,XGBoost)进行参数优化,构建基于XGBoost的以太坊交易智能定价模型,将该模型用于交易Gas价格预测中。通过搭建节点接入以太坊网络获取交易数据作为实验数据,实验结果表明,ETH_XGB模型能够帮助用户平均节省约72.5%的交易成本,交易成功率在92%,相较于原机制提高17.1%。 展开更多
关键词 以太坊 智能合约 极端梯度增强模型(xgboost) Gas价格
在线阅读 下载PDF
结合修正后的全球生态系统动态调查冠层高度的森林地上生物量模型优化——以福建省为例 被引量:3
3
作者 田国帅 周小成 +4 位作者 郝优壮 谭芳林 王永荣 吴善群 林华章 《生态学报》 CAS CSCD 北大核心 2024年第16期7264-7277,共14页
森林地上生物量(Above Ground Biomass,AGB)是衡量森林生态系统碳存储、能量流动和生物多样性的关键指标,对于气候变化研究和森林资源管理至关重要。福建省地处多云多雨的亚热带,地形和森林类型复杂,森林地上生物量估算难度大。为提升... 森林地上生物量(Above Ground Biomass,AGB)是衡量森林生态系统碳存储、能量流动和生物多样性的关键指标,对于气候变化研究和森林资源管理至关重要。福建省地处多云多雨的亚热带,地形和森林类型复杂,森林地上生物量估算难度大。为提升森林地上生物量估算效果,将最新星载激光雷达数据全球生态系统动态调查(GEDI)、Landsat以及Sentinel系列卫星等多源遥感数据进行集成和综合利用,通过Landsat影像计算的林龄对GEDI_V27冠层高度产品进行优化,结合优化后的MGEDI_V27冠层高度产品,建立传统遥感特征结合冠层高度的极端梯度提升模型(XGBoost)生物量反演模型,实现了福建省森林地上生物量的有效估算与制图。研究结果表明:(1)通过林龄优化后的GEDI冠层高度精度评价结果为R^(2)=0.67,RMSE=2.24m;(2)通过递归特征消除算法对三种森林类型进行特征优选,得到10个遥感特征,其中,三种森林类型最重要的遥感特征均为森林冠层高度,并且对比评价了在包含传统遥感特征因子的情况下有无冠层高度对于模型精度的影响,结果表明,在冠层高度因子参加特征构建时,森林AGB回归分析的精度明显提高,证实了冠层高度在生物量估算中具有显著的重要性;(3)研究得到的福建省森林AGB范围为0.001—363.331Mg/hm^(2),整体精度评价结果为R^(2)=0.75,RMSE=17.34Mg/hm^(2),2020年全省AGB总量为8.22亿Mg,平均值为101.24Mg/hm^(2)。通过优化GEDI中的森林冠层高度,并且结合传统遥感特征,可以实现对福建省森林地上生物量的精确估算和监测,研究成果有助于区域森林碳汇的评估。 展开更多
关键词 遥感 全球生态系统动态调查(GEDI) 冠层高度 森林类型 极端梯度提升模型(xgboost)回归 森林地上生物量
在线阅读 下载PDF
基于双层XGBoost和数据增强的空间负荷预测方法 被引量:6
4
作者 黄冬梅 张宁宁 +3 位作者 胡安铎 胡伟 肖勇 陈岸青 《电力工程技术》 北大核心 2023年第1期201-208,共8页
为了解决空间负荷预测面临的特征变量众多和数据匮乏问题,文中提出一种基于双层极端梯度提升(extreme gradient boosting,XGBoost)和数据增强的空间负荷预测方法。该方法首先将待预测区域按馈线供电范围划分为若干子区域;其次构建基于双... 为了解决空间负荷预测面临的特征变量众多和数据匮乏问题,文中提出一种基于双层极端梯度提升(extreme gradient boosting,XGBoost)和数据增强的空间负荷预测方法。该方法首先将待预测区域按馈线供电范围划分为若干子区域;其次构建基于双层XGBoost的特征选择模型,第一层XGBoost对特征进行评分及排序,将组合特征和负荷输入第二层XGBoost并进行子区域负荷预测,根据子区域负荷预测结果选择每个子区域的最佳特征变量;然后利用生成对抗网络(generative adversarial network,GAN)增强每个子区域的训练集样本,并通过极限学习机(extreme learning machine,ELM)实现子区域预测;最后将每个子区域的预测值相加得到待预测区域的预测值。以上海市局部区域为例,对文中方法进行仿真实验和对比分析。结果表明,文中方法可同时解决特征变量选择和数据匮乏问题,具有更高的预测精度。 展开更多
关键词 空间负荷预测 极端梯度提升(xgboost) 特征选择 生成对抗网络(GAN) 数据增强 极限学习机(ELM)
在线阅读 下载PDF
结合机器学习的SA湍流模型闭合系数修正
5
作者 徐向阳 胡冠男 +2 位作者 王良军 朱文浩 张武 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期341-351,共11页
将修正Morris分类筛选法与极端梯度提升(extreme gradient boosting,XGBoost)相结合,在计算流体动力学(computational fluid dynamics,CFD)数据驱动下,用于SA(Spalart-Allmaras)湍流模型闭合系数的修正.利用分类筛选法有效缩小闭合系数... 将修正Morris分类筛选法与极端梯度提升(extreme gradient boosting,XGBoost)相结合,在计算流体动力学(computational fluid dynamics,CFD)数据驱动下,用于SA(Spalart-Allmaras)湍流模型闭合系数的修正.利用分类筛选法有效缩小闭合系数研究范围,同时依据XGBoost方法在小规模数据集下取得精度较高的拟合模型,有效提升系数修正效率.在三维DLR-F6-WB构型下进行了数值实验,实验结果显示利用本方法能够在三维复杂模型上基于小样本数据进行系数修正,修正后的升阻力系数计算精度得到了显著提升. 展开更多
关键词 SA(Spalart-Allmaras)湍流模型 敏感度 极端梯度提升(extreme gradient boosting xgboost) 线性回归 系数修正
在线阅读 下载PDF
考虑光伏度电成本的配电网数据-知识驱动优化调控策略
6
作者 张波 张永康 +1 位作者 孙英钧 贾焦心 《电力系统自动化》 北大核心 2025年第18期74-82,共9页
光伏电源深度参与配电网优化调控可促进新能源配电网安全稳定运行,但势必会降低光伏电源的寿命损伤,同时增加优化模型的求解复杂度。为此,文中基于数据-知识驱动架构,提出考虑光伏度电成本的配电网数据-知识驱动优化调控策略。首先,分... 光伏电源深度参与配电网优化调控可促进新能源配电网安全稳定运行,但势必会降低光伏电源的寿命损伤,同时增加优化模型的求解复杂度。为此,文中基于数据-知识驱动架构,提出考虑光伏度电成本的配电网数据-知识驱动优化调控策略。首先,分析光伏电源提供无功支撑对光伏度电成本的影响,建立考虑光伏度电成本的配电网优化最优决策知识模型,获取配电网优化调控最优决策知识。然后,将配电网优化调控最优决策知识嵌入数据驱动的配电网极端梯度提升(XGBoost)优化调控模型,通过数据-知识驱动方法挖掘配电网状态信息与光伏最优决策之间的非线性映射关系,并利用贝叶斯算法完成XGBoost模型超参数的自适应优化。最后,利用PG&E 69节点典型配电系统验证所提策略的有效性。 展开更多
关键词 配电网 优化调控 数据-知识驱动 光伏 度电成本 极端梯度提升(xgboost)模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部