期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
距离加权极端支持向量机
1
作者 鲁淑霞 周旭 +1 位作者 张萌 王熙照 《计算机工程与应用》 CSCD 2013年第12期160-163,共4页
由于极端支持向量分类机(ESVM)在对样本进行分类时并没有考虑到数据集中样本点的分布情况,对所有样本点的误差项都给予了相同的惩罚因子,使得分类器的分类效果很容易受到噪声、野值数据的干扰,针对这个问题,在ESVM的基础上提出了一种基... 由于极端支持向量分类机(ESVM)在对样本进行分类时并没有考虑到数据集中样本点的分布情况,对所有样本点的误差项都给予了相同的惩罚因子,使得分类器的分类效果很容易受到噪声、野值数据的干扰,针对这个问题,在ESVM的基础上提出了一种基于距离加权的极端支持向量机(WESVM)。由于不同的样本到其类中心距离的不同,因此对不同的样本给予不同的权重。分类实验结果表明WESVM与ELM、ESVM相比具有更好的分类精度。 展开更多
关键词 极端支持向量机 支持向量
在线阅读 下载PDF
基于邻域粗糙集与支持向量极端学习机的瓦斯传感器故障诊断 被引量:7
2
作者 单亚峰 汤月 +1 位作者 任仁 谢鸿 《传感技术学报》 CAS CSCD 北大核心 2016年第9期1400-1404,共5页
针对于瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障作为研究对象,提出一种基于邻域粗糙集(NRS)和支持向量极端学习机(SVM-ELM)的故障诊断方法。首先对瓦斯传感器的特征属性值... 针对于瓦斯传感器故障诊断速度慢、诊断精度不高的问题,以常见的冲击型、漂移型、偏置型和周期型传感器输出故障作为研究对象,提出一种基于邻域粗糙集(NRS)和支持向量极端学习机(SVM-ELM)的故障诊断方法。首先对瓦斯传感器的特征属性值进行归一化处理,然后利用NRS信息约简理论降低属性维度,提取出影响瓦斯传感器的关键属性构成约简集。将约简集作为SVM-ELM的输入进行训练,利用训练好的SVM-ELM对测试样本进行模式识别。最后通过实验对比验证该方法具有训练速度快、分类精度高的特点,辨识正确率在95%以上,能够显著提高故障诊断的速度和准确性。 展开更多
关键词 瓦斯传感器 邻域粗糙集(NRS) 支持向量极端学习(SVM-ELM) 故障诊断
在线阅读 下载PDF
一种基于MapReduce的动态数据流分类算法
3
作者 冯林 姚远 +1 位作者 陈沣 金博 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第4期461-468,共8页
当前动态数据流下的实时分类问题存在3个难点:针对海量数据的实时处理;概念漂移的跟踪和模型的更新;模型的稳定和鲁棒性.针对上述问题,将极端支持向量机(extreme support vector machine,ESVM)与MapReduce框架结合,提出了带遗忘因子的鲁... 当前动态数据流下的实时分类问题存在3个难点:针对海量数据的实时处理;概念漂移的跟踪和模型的更新;模型的稳定和鲁棒性.针对上述问题,将极端支持向量机(extreme support vector machine,ESVM)与MapReduce框架结合,提出了带遗忘因子的鲁棒ESVM算法.该方法通过构造残差权重矩阵,对残差进行修正,同时加入遗忘因子,提高新样本的作用,从而实现对海量数据处理问题的求解.实验结果显示,所提出方法能够快速有效地对动态数据流进行分类,且结果不易受到噪声干扰,稳定性强. 展开更多
关键词 数据流分类 增量式学习 极端支持向量机(ESVM) MapReduce遗忘因子 鲁棒性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部