期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于场因子分解的xDeepFM推荐模型
1
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 因子分解 度学习
在线阅读 下载PDF
面向GPS数据的出租车载客路线层次化推荐模型
2
作者 张德城 刘毅志 +1 位作者 赵肄江 廖祝华 《计算机工程》 CAS CSCD 北大核心 2024年第12期163-173,共11页
出租车载客推荐能够有效提高司机利润,对于提升交通效率、改善城市出行体验以及推动智能交通的发展都具有重要意义。现有方法一般直接向司机进行载客区域或载客路线推荐,没有考虑将这两者进行结合,不仅面临数据稀疏性问题,而且难以兼顾... 出租车载客推荐能够有效提高司机利润,对于提升交通效率、改善城市出行体验以及推动智能交通的发展都具有重要意义。现有方法一般直接向司机进行载客区域或载客路线推荐,没有考虑将这两者进行结合,不仅面临数据稀疏性问题,而且难以兼顾推荐准确性与实时性能。为此,提出一种面向GPS数据的出租车载客路线层次化推荐模型,其中采用了抗稀疏性的极深因子分解机(xDeepFM)、深度Q网络(DQN)强化学习算法以及层次化推荐策略。首先,离线推荐高载客概率的大网格,以减少在线计算量;然后,当出租车司机提出实时载客推荐需求时,在离线推荐的大网格内进一步推荐高载客概率的小网格;最后,给司机规划一条到小网格的载客路线。在滴滴公司数据集上进行实验,结果表明,与现有的一些先进方法相比,该方法可以使空载出租车司机的巡航时间至少减少36%,巡航距离至少减少26%,并且推荐时间仅需85 ms。 展开更多
关键词 载客路线推荐 载客区域推荐 层次化推荐 极深因子分解机 度Q网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部