期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于极大重叠离散小波变换的金融高频数据波动率估计 被引量:2
1
作者 秦喜文 刘文博 +2 位作者 董小刚 王纯杰 李纯净 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第6期1222-1226,共5页
利用极大重叠离散小波变换方法对资产收益的积分波动率进行估计.针对沪深300指数选取不同小波函数估计积分波动率,计算相对误差统计量.结果表明,不同小波函数对积分波动率估计不存在显著差异,但随着抽样频率的增加,估计精度逐渐提高.对... 利用极大重叠离散小波变换方法对资产收益的积分波动率进行估计.针对沪深300指数选取不同小波函数估计积分波动率,计算相对误差统计量.结果表明,不同小波函数对积分波动率估计不存在显著差异,但随着抽样频率的增加,估计精度逐渐提高.对尺度及其相应尺度下的波动率进行对数变换可见,二者之间存在显著的线性关系,随着尺度的增加,波动率逐渐变小. 展开更多
关键词 高频数据 极大重叠离散小波变换 动率估计 小波方差
在线阅读 下载PDF
基于极大重叠小波系数方差分析的混沌时间序列去噪方法研究 被引量:1
2
作者 孙海 高会旺 高惠瑛 《自然灾害学报》 CSCD 北大核心 2016年第5期105-113,共9页
自然界中观测到的混沌现象一般都混有噪声,存在的噪声会使得对混沌时间序列的预测产生较大的误差。小波阈值去噪具有多分辨率分析的特点,计算量较小,同时去噪效果较好,但传统的消噪方法存在重信号而轻噪声特征的情况,噪声水平的估计也... 自然界中观测到的混沌现象一般都混有噪声,存在的噪声会使得对混沌时间序列的预测产生较大的误差。小波阈值去噪具有多分辨率分析的特点,计算量较小,同时去噪效果较好,但传统的消噪方法存在重信号而轻噪声特征的情况,噪声水平的估计也常常以第1层小波系数的中值变差为依据,同时阈值的选取又与噪声水平和信号长度相关。如果能准确估算混沌信号的水平,并确定各层小波分解系数上的噪声方差,便可提高去噪效果。因此,构建了近似仿真Lorenz混沌含噪信号,并通过极大重叠离散小波对信号进行了分解,分析噪声方差在各层小波系数上的分布规律,并由此确定小波系数各层不同的阈值系数。通过该方法可以得到相对较优的结果。算例结果表明,采用所提方法可以减少预测产生的误差,验证了该方法的有效性。 展开更多
关键词 极大重叠离散小波 方差分解 阈值去噪 混沌信号 值噪比 均方根误差 径流量
在线阅读 下载PDF
基于小波和神经网络模型的邮电业务总量预测 被引量:1
3
作者 单锐 代海波 刘文 《郑州大学学报(工学版)》 CAS 北大核心 2013年第3期94-97,120,共5页
引入极大重叠离散小波变换的概念,利用极大重叠离散小波变换的多分辨分析特性,对邮电业务总量序列进行分解.然后对分离得到的光滑项和细节项两部分利用小波神经网络模型进行建模和预测,最后再重构得到邮电业务总量序列的预测值.数据测... 引入极大重叠离散小波变换的概念,利用极大重叠离散小波变换的多分辨分析特性,对邮电业务总量序列进行分解.然后对分离得到的光滑项和细节项两部分利用小波神经网络模型进行建模和预测,最后再重构得到邮电业务总量序列的预测值.数据测试结果表明:本文方法可实现多步预测,且对邮电业务总量的预测精度比单纯的用小波神经网络模型或BP神经网络模型高. 展开更多
关键词 BP神经网络模型 极大重叠离散小波变换 小波神经网络 邮电业务总量
在线阅读 下载PDF
基于改进图神经网络的含源配电网故障诊断方法及效果
4
作者 胡登宇 王宝华 刘晋宏 《科学技术与工程》 北大核心 2025年第21期8936-8944,共9页
分布式电源大量接入,导致含源配网故障弱特征化以及故障时刻产生大量谐波信号,传统故障诊断方法应用效果不佳。提出一种基于改进图神经网络的含源配网故障诊断方法。首先,利用小波变换提取故障前后电流电压细节系数;其次,通过加权投影... 分布式电源大量接入,导致含源配网故障弱特征化以及故障时刻产生大量谐波信号,传统故障诊断方法应用效果不佳。提出一种基于改进图神经网络的含源配网故障诊断方法。首先,利用小波变换提取故障前后电流电压细节系数;其次,通过加权投影关联分析法计算各电气量之间的关联度;再次,选择关联度较高的电气量作为输入搭建基于图神经网络的含源配网故障诊断模型;最后,在MATLAB/Simulink中搭建了不同电压等级的含源配网故障仿真模型。结果表明,该故障诊断方法能有效强化故障信号并在不同电压等级的含源配网下对故障准确定位与分类,在数据缺失与噪声环境下也能保持良好的诊断性能,具有良好的鲁棒性与泛化性。 展开更多
关键词 故障诊断 极大重叠离散小波变换 灰色关联度 加权灰色关联投影法 图神经网络
在线阅读 下载PDF
基于先验知识的移动通信话务量预测 被引量:13
5
作者 彭宇 雷苗 +3 位作者 郭嘉 彭喜元 于江 陈强 《电子学报》 EI CAS CSCD 北大核心 2011年第1期190-194,共5页
本文提出了一种基于先验知识引导的极大重叠离散小波变换的移动通信话务量预测方法.采用傅里叶谱分析作为小波分解子成分先验知识降低小波分解的盲目性.利用具有明确物理意义且更易提取子层的极大重叠离散小波变换对话务量序列进行分解... 本文提出了一种基于先验知识引导的极大重叠离散小波变换的移动通信话务量预测方法.采用傅里叶谱分析作为小波分解子成分先验知识降低小波分解的盲目性.利用具有明确物理意义且更易提取子层的极大重叠离散小波变换对话务量序列进行分解.分解后仍以傅里叶谱先验知识为参考,合并相关子层形成趋势项和周期项两部分,并采用季节性求和自回归滑动平均(ARIMA)模型对二者分别建模和预测.采用真实数据测试的结果表明:本文方法可实现多步预测,且预测精度优于单纯的季节性ARIMA模型. 展开更多
关键词 移动通信 话务量预测 极大重叠离散小波变换 先验知识
在线阅读 下载PDF
基于copula-SV模型的股市相关性的多分辨分析 被引量:2
6
作者 王相宁 郑晓智 《中国科学技术大学学报》 CAS CSCD 北大核心 2013年第12期1004-1011,共8页
使用极大重叠离散小波变换将上证指数和深成指数的日数据分解在了4个尺度上,分别采用SV-t模型拟合边缘分布,并建立copula函数来拟合两市在不同尺度上的收益率,并分析其尾部相关性.结果表明沪深两市时间序列在同尺度下的相关性远远大于... 使用极大重叠离散小波变换将上证指数和深成指数的日数据分解在了4个尺度上,分别采用SV-t模型拟合边缘分布,并建立copula函数来拟合两市在不同尺度上的收益率,并分析其尾部相关性.结果表明沪深两市时间序列在同尺度下的相关性远远大于不同尺度下的相关性,且在同一置信水平下,各尺度的下尾相关性要大于上尾相关性,随着交易周期的增加,不论是下尾还是上尾的相关性都明显增强. 展开更多
关键词 SV-t模型 极大重叠离散小波变换 COPULA函数 相关性
在线阅读 下载PDF
基于并行隐马尔科夫模型的电能质量扰动事件分类 被引量:18
7
作者 谢善益 肖斐 +1 位作者 艾芊 周刚 《电力系统保护与控制》 EI CSCD 北大核心 2019年第2期80-86,共7页
为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MaximalOverlapDiscrete WaveletTransform, MODWT)和并行隐马尔科夫模型(ParallelHiddenMarkovModel, PHMM)的电能质量扰动分类方法。首先利用MODWT提出一种实... 为满足电能质量扰动准确分类的需求,提出了一种基于极大重叠离散小波变换(MaximalOverlapDiscrete WaveletTransform, MODWT)和并行隐马尔科夫模型(ParallelHiddenMarkovModel, PHMM)的电能质量扰动分类方法。首先利用MODWT提出一种实用的电能质量扰动检测算法,该算法无需设定检测阈值,可准确获取扰动时段的起止时刻。接着提取扰动时段的电压谐波成分并组成特征向量。然后用PHMM分类器对扰动信号进行分类识别。PHMM方法克服了人工神经网络方法收敛性较差、训练时间较长的缺陷,使分类器性能大大提升。通过应用于现场实测扰动数据表明,所提出的方法适用于多种类型的电能质量扰动检测,分类正确率高,训练速度快,具有良好的应用价值。 展开更多
关键词 电能质量 极大重叠离散小波变换 并行隐马尔科夫模型 分类识别
在线阅读 下载PDF
基于MODWT在金融数据预测的应用 被引量:3
8
作者 廖丽芳 蔡如华 《计算机工程与设计》 CSCD 北大核心 2013年第4期1346-1350,共5页
为了准确的把握股价的趋势走向,提出了一种基于极大重叠离散小波变换(MODWT)时间序列分析的股价预测方法 (M-ARMA)。该方法是对股价时间序列利用mallat算法对其进行极大重叠离散小波变换,使得整个序列分解成不同频率的序列,同时利用小... 为了准确的把握股价的趋势走向,提出了一种基于极大重叠离散小波变换(MODWT)时间序列分析的股价预测方法 (M-ARMA)。该方法是对股价时间序列利用mallat算法对其进行极大重叠离散小波变换,使得整个序列分解成不同频率的序列,同时利用小波分析在时域和频域上都具有良好的局部化性质,多尺度分析功能,结合ARMA模型的预测方法,以较为准确地根据历史数据预测其将来短期的走势。实验表明,MODWT时间序列分析方法比传统的时间序列分析方法预测的精度更高。 展开更多
关键词 极大重叠离散小波变换 时间序列分析 ARMA模型 预测
在线阅读 下载PDF
基于MODWT的多分辨系统风险分析
9
作者 廖丽芳 蔡如华 《统计与决策》 CSSCI 北大核心 2013年第13期34-36,共3页
文章利用小波分析具有良好的多分辨特性,对其股票收益率进行极大重叠离散小波变换,使得收益率按不同频率分解,然后对不同时间尺度上的收益率估计CAPM模型的Beta系数。实验结果表明,在不同的尺度下,Beta系数有较大的差异,即系统风险值Bet... 文章利用小波分析具有良好的多分辨特性,对其股票收益率进行极大重叠离散小波变换,使得收益率按不同频率分解,然后对不同时间尺度上的收益率估计CAPM模型的Beta系数。实验结果表明,在不同的尺度下,Beta系数有较大的差异,即系统风险值Beta具有多分辨性,投资者可以根据不同Beta值选择不同的投资时间,使得风险分散化。 展开更多
关键词 CAPM 极大重叠离散小波变换 BETA系数 多分辨分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部