为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极...为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极化SAR。该方法采用目标级的分类策略,首先,通过简单线性迭代聚类方法实现多时相极化SAR的超像素联合分割;随后,将目标的极化协方差矩阵表示为张量的形式,利用张量域的多线性主成分分析方法,实现多时相极化协方差矩阵的特征降维;最后,用决策树方法实现农作物分类。获取4景RADARSAT-2 Fine Quad模式全极化SAR图像,对天津市武清区农作物种植区开展作物分类实验,相较于其他文献提出的方法,本文方法取得了最高的总体分类精度。进一步,将该方法推广至π/4模式和CTLR模式的简缩极化SAR,并将其农作物分类精度与全极化SAR进行对比,以研究不同极化SAR数据对作物的识别能力。实验结果表明,简缩极化SAR可以取得与全极化SAR相当的总体分类精度,但全极化SAR在水稻、荷花等小样本地物上表现更优。展开更多
基金Supported by National Basic Research Program of China(2013CB329402)National Natural Science Foundation of China(61473215,61472306,61502369)+5 种基金the Fund for Foreign Scholars in University Research and Teaching Programs(B07048)the Major Research Plan of the National Natural Science Foundation of China(91438201,91438103)the Program for Cheung Kong Scholars and Innovative Research Team in University(IRT_15R53)the foundation from Ministry of Education of China(BK16015020001)the National Science Basic Plan in Shaanxi Province of China(2016JQ6049)the Fundamental Research Funds for the Central Universities(7215598901)
文摘为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极化SAR。该方法采用目标级的分类策略,首先,通过简单线性迭代聚类方法实现多时相极化SAR的超像素联合分割;随后,将目标的极化协方差矩阵表示为张量的形式,利用张量域的多线性主成分分析方法,实现多时相极化协方差矩阵的特征降维;最后,用决策树方法实现农作物分类。获取4景RADARSAT-2 Fine Quad模式全极化SAR图像,对天津市武清区农作物种植区开展作物分类实验,相较于其他文献提出的方法,本文方法取得了最高的总体分类精度。进一步,将该方法推广至π/4模式和CTLR模式的简缩极化SAR,并将其农作物分类精度与全极化SAR进行对比,以研究不同极化SAR数据对作物的识别能力。实验结果表明,简缩极化SAR可以取得与全极化SAR相当的总体分类精度,但全极化SAR在水稻、荷花等小样本地物上表现更优。