将传统电磁矢量均匀阵列推广为电磁矢量互质阵列,突破了阵元间距不大于半波长的限制。提出了电磁矢量互质阵列中基于降维Capon的波达方向(Direction of arrival,DOA)和极化联合估计算法。该算法无需假设已知极化信息,且只需一维搜索,避...将传统电磁矢量均匀阵列推广为电磁矢量互质阵列,突破了阵元间距不大于半波长的限制。提出了电磁矢量互质阵列中基于降维Capon的波达方向(Direction of arrival,DOA)和极化联合估计算法。该算法无需假设已知极化信息,且只需一维搜索,避免了多维搜索,可实现DOA和极化参数自动配对;与相同阵元数的均匀阵列相比,明显提高了角度估计性能,并拓展了天线孔径,具有相对较高的自由度,且降低了运算复杂度。相同阵列及参数条件下,本文算法的角度估计性能优于ESPRIT算法和三线性分解算法。展开更多
为了解决相干信号的极化平滑算法在小快拍数和低信噪比条件下估计性能较差的问题,结合四元数的正交特性和协方差张量方法,提出了一种基于张量四元数的极化平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,为...为了解决相干信号的极化平滑算法在小快拍数和低信噪比条件下估计性能较差的问题,结合四元数的正交特性和协方差张量方法,提出了一种基于张量四元数的极化平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,为了充分利用接收数据样本中的多维结构信息,建立了由张量四元数表示的柱面共形阵列极化平滑信号模型;其次,将平滑后的张量协方差矩阵通过高阶奇异值分解得到信号子空间;最后,通过极化秩亏MUSIC算法对入射相干信号分别进行二维波达方向(Direction of Arrival,DOA)估计和极化参数估计。仿真结果表明,该算法在小快拍数和低信噪比条件下具有更高的估计精度和分辨能力。展开更多
现有的波达方向(Direction Of Arrival,DOA)和极化参数估计方法大多基于子空间理论.本文从稀疏信号重构角度出发,提出了一种新的DOA和极化角度估计算法.该算法首先构建一个只包含DOA信息的累积量矩阵模型,然后基于加权l1范数最小化获得...现有的波达方向(Direction Of Arrival,DOA)和极化参数估计方法大多基于子空间理论.本文从稀疏信号重构角度出发,提出了一种新的DOA和极化角度估计算法.该算法首先构建一个只包含DOA信息的累积量矩阵模型,然后基于加权l1范数最小化获得DOA估计.在DOA估计的基础上,进一步通过求和平均运算构建三个包含不同极化信息的累积量向量模型,利用Zhang惩罚进行稀疏性约束,获得近似无偏的极化角度估计.阐述了如何利用极化信息来区分两个入射角度一样的信源信号.计算机仿真结果验证了所提算法的有效性.展开更多
文摘将传统电磁矢量均匀阵列推广为电磁矢量互质阵列,突破了阵元间距不大于半波长的限制。提出了电磁矢量互质阵列中基于降维Capon的波达方向(Direction of arrival,DOA)和极化联合估计算法。该算法无需假设已知极化信息,且只需一维搜索,避免了多维搜索,可实现DOA和极化参数自动配对;与相同阵元数的均匀阵列相比,明显提高了角度估计性能,并拓展了天线孔径,具有相对较高的自由度,且降低了运算复杂度。相同阵列及参数条件下,本文算法的角度估计性能优于ESPRIT算法和三线性分解算法。
文摘为了解决相干信号的极化平滑算法在小快拍数和低信噪比条件下估计性能较差的问题,结合四元数的正交特性和协方差张量方法,提出了一种基于张量四元数的极化平滑多重信号分类(Multiple Signal Classification,MUSIC)解相干算法。首先,为了充分利用接收数据样本中的多维结构信息,建立了由张量四元数表示的柱面共形阵列极化平滑信号模型;其次,将平滑后的张量协方差矩阵通过高阶奇异值分解得到信号子空间;最后,通过极化秩亏MUSIC算法对入射相干信号分别进行二维波达方向(Direction of Arrival,DOA)估计和极化参数估计。仿真结果表明,该算法在小快拍数和低信噪比条件下具有更高的估计精度和分辨能力。
文摘现有的波达方向(Direction Of Arrival,DOA)和极化参数估计方法大多基于子空间理论.本文从稀疏信号重构角度出发,提出了一种新的DOA和极化角度估计算法.该算法首先构建一个只包含DOA信息的累积量矩阵模型,然后基于加权l1范数最小化获得DOA估计.在DOA估计的基础上,进一步通过求和平均运算构建三个包含不同极化信息的累积量向量模型,利用Zhang惩罚进行稀疏性约束,获得近似无偏的极化角度估计.阐述了如何利用极化信息来区分两个入射角度一样的信源信号.计算机仿真结果验证了所提算法的有效性.