期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于降噪自编码神经网络的积雪产品去云方法
被引量:
1
1
作者
张永宏
陈帅
+2 位作者
王剑庚
朱灵龙
陈诗伟
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2023年第2期169-179,共11页
目前应用最为广泛的积雪覆盖区域图(SCA)可由中分辨率成像光谱仪(MODIS)获取,常被用于积雪覆盖时空变化的研究中.由于受云遮挡的影响,MODIS积雪产品存在较大区域的数据缺失.为了消除云遮挡的影响,本文构建一种降噪自编码神经网络模型,...
目前应用最为广泛的积雪覆盖区域图(SCA)可由中分辨率成像光谱仪(MODIS)获取,常被用于积雪覆盖时空变化的研究中.由于受云遮挡的影响,MODIS积雪产品存在较大区域的数据缺失.为了消除云遮挡的影响,本文构建一种降噪自编码神经网络模型,建立雪粒径与复杂地形、土地覆盖类型之间的复杂的映射关系,实现云下积雪参数的补全,提高积雪产品的覆盖面积.本文选取开都河流域为研究区域,将MODIS反演得到的积雪产品数据与地形地物数据结合,并通过降噪自编码神经网络(Denoising Autoencoder Artificial Neural Network)、极值雪线法相结合的方法来定量地回归补全高山复杂地形下由于云覆盖导致的积雪缺失数据,从而得到无缺失的逐日雪盖数据.其中,降噪自编码神经网络融合多特征数据,建立地形特征与雪粒径数据之间的非线性映射关系,从而来补全云层下的雪粒径数据;极值雪线法主要用来去除低海拔地区误报值,进一步提高雪盖提取精度.采用MODIS积雪产品对去云结果开展精度验证,本文所提出的去云方法的精度超过86%,有效地提高了雪盖提取精度.因此,本文所提的算法可以有效地去除复杂地形区域的云覆盖.
展开更多
关键词
降噪自编码神经网络
极值雪线法
复杂地形
去云
在线阅读
下载PDF
职称材料
题名
一种基于降噪自编码神经网络的积雪产品去云方法
被引量:
1
1
作者
张永宏
陈帅
王剑庚
朱灵龙
陈诗伟
机构
南京信息工程大学自动化学院
南京信息工程大学大气物理学院
南京信息工程大学电子与信息工程学院
出处
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2023年第2期169-179,共11页
基金
国家自然科学基金(41875027,41871238)。
文摘
目前应用最为广泛的积雪覆盖区域图(SCA)可由中分辨率成像光谱仪(MODIS)获取,常被用于积雪覆盖时空变化的研究中.由于受云遮挡的影响,MODIS积雪产品存在较大区域的数据缺失.为了消除云遮挡的影响,本文构建一种降噪自编码神经网络模型,建立雪粒径与复杂地形、土地覆盖类型之间的复杂的映射关系,实现云下积雪参数的补全,提高积雪产品的覆盖面积.本文选取开都河流域为研究区域,将MODIS反演得到的积雪产品数据与地形地物数据结合,并通过降噪自编码神经网络(Denoising Autoencoder Artificial Neural Network)、极值雪线法相结合的方法来定量地回归补全高山复杂地形下由于云覆盖导致的积雪缺失数据,从而得到无缺失的逐日雪盖数据.其中,降噪自编码神经网络融合多特征数据,建立地形特征与雪粒径数据之间的非线性映射关系,从而来补全云层下的雪粒径数据;极值雪线法主要用来去除低海拔地区误报值,进一步提高雪盖提取精度.采用MODIS积雪产品对去云结果开展精度验证,本文所提出的去云方法的精度超过86%,有效地提高了雪盖提取精度.因此,本文所提的算法可以有效地去除复杂地形区域的云覆盖.
关键词
降噪自编码神经网络
极值雪线法
复杂地形
去云
Keywords
denoising autoencoder artificial neural network
extreme snow line method
complex terrain
cloud removal
分类号
P426.635 [天文地球—大气科学及气象学]
P407.8 [天文地球—大气科学及气象学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于降噪自编码神经网络的积雪产品去云方法
张永宏
陈帅
王剑庚
朱灵龙
陈诗伟
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部