期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于低空无人机成像光谱仪影像估算棉花叶面积指数 被引量:56
1
作者 田明璐 班松涛 +4 位作者 常庆瑞 由明明 罗丹 王力 王烁 《农业工程学报》 EI CAS CSCD 北大核心 2016年第21期102-108,共7页
农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-ba... 农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-bandvegetation index,F_VI)进行改进,通过动态搜索相应植被指数定义所使用波段范围内的反射率极值的方法,计算与各类植被指数对应的极值植被指数(extremum vegetation index,E_VI)。分别以原始全波段光谱反射率、连续投影算法(successive projections algorithm,SPA)提取的有效波段反射率以及各类F_VI和E_VI作为自变量,使用最小二乘和偏最小二乘(partial least squares,PLS)回归等方法构建LAI遥感估算模型。结果显示:1)以植被指数为自变量的模型估算效果(验证R2最高为0.85)优于以光谱反射率作为自变量的模型(验证R2最高为0.59);2)使用E_VI作为自变量能够显著提高LAI的估测精度(验证R2最大提高了0.11);3)使用PLS回归算法结合多个E_VI建立的LAI-E_VIs-PLS模型精度最高。使用LAI-E_VIs-PLS模型对棉花地块高光谱影像进行反演,制作棉花LAI空间分布图,取得良好的估算结果(验证R2=0.88,RMSE=0.29),为农作物LAI遥感监测提供了新的技术手段。 展开更多
关键词 无人机 作物 遥感 高光谱成像 棉花 叶面积指数 极值植被指数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部