A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plast...A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures.展开更多
The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial ...The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.展开更多
Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stabili...Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum allowable failure probability. The results can provide practical use in the pressurized tunnel engineering.展开更多
For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighb...For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighborhood of the origin are also given. The technique employed is essentially different from usual ones. The recursive formula for computation of critical point quantities is linear and then avoids complex integral operations. Some results show an interesting contrast with the related results on quadratic systems.展开更多
基金Project(50969007)supported by National Natural Science Foundation of ChinaProject(GJJ13753)supported by the Scientific and Technological Research Fund,Department of Education,Jiangxi Province,China
文摘A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures.
基金Project(2011ZX05002-005-006) supported by the National Science and Technology Major Research Program during the Twelfth Five-Year Plan of China
文摘The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum allowable failure probability. The results can provide practical use in the pressurized tunnel engineering.
文摘For a class of quintic systems, the first 16 critical point quantities are obtained by computer algebraic system Mathematica, and the necessary and sufficient conditions that there exists an exact integral in a neighborhood of the origin are also given. The technique employed is essentially different from usual ones. The recursive formula for computation of critical point quantities is linear and then avoids complex integral operations. Some results show an interesting contrast with the related results on quadratic systems.