期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于字词向量的BiLSTM-CRF水利工程巡检文本实体识别模型
被引量:
5
1
作者
刘雪梅
程彭圣男
+3 位作者
李海瑞
曹闯
高英
崔培
《华北水利水电大学学报(自然科学版)》
北大核心
2024年第3期9-17,共9页
命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提...
命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提出字词向量融合的BiLSTM-CRF模型,首先将巡检文本分别在字维度和词维度进行向量化处理,合并字词向量获取字词向量特征;然后利用BiLSTM神经网络获取序列化后的上下文特征;最后通过CRF进行解码并提取相应实体。以南水北调中线工程巡检文本为例,实验结果表明:字词向量结合之后的方法能有效提高识别性能,对实体边界的识别效果更优,模型准确率、召回率和F1值分别可以达到93.79%、93.06%、93.42%;时间效率较BERT-BiLSTM-CRF模型的时间效率提高82.86%。基于字词向量的BiLSTM-CRF模型可为水利工程知识图谱的快速构建提供技术支撑。
展开更多
关键词
巡检文本
实体识别
双向长短期记忆神经网络
Word2Vec
条件向量场
在线阅读
下载PDF
职称材料
题名
基于字词向量的BiLSTM-CRF水利工程巡检文本实体识别模型
被引量:
5
1
作者
刘雪梅
程彭圣男
李海瑞
曹闯
高英
崔培
机构
华北水利水电大学信息工程学院
河南省水利勘测设计研究有限公司
华北水利水电大学管理与经济学院
黄河水利水电开发集团有限公司
出处
《华北水利水电大学学报(自然科学版)》
北大核心
2024年第3期9-17,共9页
基金
国家自然科学基金项目(72271091)
河南省科学院科技开放合作项目(220901008)。
文摘
命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提出字词向量融合的BiLSTM-CRF模型,首先将巡检文本分别在字维度和词维度进行向量化处理,合并字词向量获取字词向量特征;然后利用BiLSTM神经网络获取序列化后的上下文特征;最后通过CRF进行解码并提取相应实体。以南水北调中线工程巡检文本为例,实验结果表明:字词向量结合之后的方法能有效提高识别性能,对实体边界的识别效果更优,模型准确率、召回率和F1值分别可以达到93.79%、93.06%、93.42%;时间效率较BERT-BiLSTM-CRF模型的时间效率提高82.86%。基于字词向量的BiLSTM-CRF模型可为水利工程知识图谱的快速构建提供技术支撑。
关键词
巡检文本
实体识别
双向长短期记忆神经网络
Word2Vec
条件向量场
Keywords
inspection text
entity recognition
BiLSTM neural network
Word2Vec
conditional vector field
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于字词向量的BiLSTM-CRF水利工程巡检文本实体识别模型
刘雪梅
程彭圣男
李海瑞
曹闯
高英
崔培
《华北水利水电大学学报(自然科学版)》
北大核心
2024
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部