期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于字词向量的BiLSTM-CRF水利工程巡检文本实体识别模型 被引量:5
1
作者 刘雪梅 程彭圣男 +3 位作者 李海瑞 曹闯 高英 崔培 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第3期9-17,共9页
命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提... 命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提出字词向量融合的BiLSTM-CRF模型,首先将巡检文本分别在字维度和词维度进行向量化处理,合并字词向量获取字词向量特征;然后利用BiLSTM神经网络获取序列化后的上下文特征;最后通过CRF进行解码并提取相应实体。以南水北调中线工程巡检文本为例,实验结果表明:字词向量结合之后的方法能有效提高识别性能,对实体边界的识别效果更优,模型准确率、召回率和F1值分别可以达到93.79%、93.06%、93.42%;时间效率较BERT-BiLSTM-CRF模型的时间效率提高82.86%。基于字词向量的BiLSTM-CRF模型可为水利工程知识图谱的快速构建提供技术支撑。 展开更多
关键词 巡检文本 实体识别 双向长短期记忆神经网络 Word2Vec 条件向量场
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部