期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
课堂环境下用于头部行为识别的李群特征表示 被引量:2
1
作者 谢冬 孟凡荣 +1 位作者 贺恒桃 闫秋艳 《计算机工程与应用》 CSCD 北大核心 2022年第6期164-169,共6页
头部行为是个体行为的重要组成部分,在课堂环境下对于学生的行为来说更是如此。使用传统的RGB视频图像进行头部行为识别有着许多限制,例如背景的干扰和光线的变化等,而深度图像可以通过包含的深度信息很好地处理这些问题。针对课堂环境... 头部行为是个体行为的重要组成部分,在课堂环境下对于学生的行为来说更是如此。使用传统的RGB视频图像进行头部行为识别有着许多限制,例如背景的干扰和光线的变化等,而深度图像可以通过包含的深度信息很好地处理这些问题。针对课堂环境下的头部行为识别问题,受到李群理论的启发,提出了一种从深度图像中提取李群特征表示的模型,并且使用该李群特征完成了头部行为识别任务。从深度图像中获取脸部的关键点及关键段信息,通过计算相邻帧之间关键段的旋转及位移获得能够同时表示时间空间信息的李群特征表示,使用支持向量机来完成头部行为的分类识别。在公开数据集上验证了方法的有效性,然后通过Kinect获取制作了课堂环境下的真实行为数据,实验结果表明李群特征表示方法能够有效帮助课堂环境下头部行为的识别,对课堂环境下的学生行为识别提供了帮助。 展开更多
关键词 头部行为识别 李群特征 课堂环境
在线阅读 下载PDF
李群核学习算法研究 被引量:2
2
作者 高聪 李凡长 沈程 《计算机科学与探索》 CSCD 2012年第11期1026-1038,共13页
分析了李群流形空间的几何结构、核函数和KFDA(kernel Fisher linear discriminant analysis)的原理,推导了矩阵李群内积空间的度量形式,进一步推导出5个李群核函数,并以此设计实现了KLieDA(kernel Lie group linear discriminant analy... 分析了李群流形空间的几何结构、核函数和KFDA(kernel Fisher linear discriminant analysis)的原理,推导了矩阵李群内积空间的度量形式,进一步推导出5个李群核函数,并以此设计实现了KLieDA(kernel Lie group linear discriminant analysis)算法。李群核函数是适应性更广的核函数形式,由于欧氏空间的几何结构是李群的子集,李群函数不仅适用于矩阵李群的样本集,同时也适用于常规的向量形式的样本集。实验表明,基于李群函数和李群均值理论的KLieDA算法是一种快速高效的李群样本分类器。实验部分除了KLieDA的分类,还对基于李群核的SVM(support vector machine)算法进行手写体分类,结果表明,手写体图像的区域协方差李群特征具有较好的线性分布特性。 展开更多
关键词 李群 李群 李群均值 李群协方差特征 分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部