期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于XGBoost和改进灰狼优化算法的催化裂化汽油精制装置的辛烷值损失模型分析 被引量:9
1
作者 陈延展 胡浩 +1 位作者 任紫畅 成艾国 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2022年第1期208-219,共12页
为了降低催化裂化汽油精制装置的辛烷值损失,基于机器学习技术和改进灰狼优化算法建立了汽油辛烷值损失的预测和优化模型。首先通过Pearson相关系数法、最大互信息系数法(MIC)和基于随机森林的特征选择方法分别对影响汽油辛烷值的367个... 为了降低催化裂化汽油精制装置的辛烷值损失,基于机器学习技术和改进灰狼优化算法建立了汽油辛烷值损失的预测和优化模型。首先通过Pearson相关系数法、最大互信息系数法(MIC)和基于随机森林的特征选择方法分别对影响汽油辛烷值的367个特征进行训练获得各特征的重要度评分,对3种方法的结果按权重法进行融合获得最终的特征重要度排序,根据特征重要度占比之和超过95%的指标,选出25个特征作为建模主要变量;然后基于XGBoost算法建立汽油辛烷值损失预测模型,对比其他机器学习模型,验证了XGBoost在测试集上的预测性能最优,其均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)分别为1.3197、0.3581和0.9981;最后采用汽油辛烷值损失值与主要变量的映射函数作为目标函数,建立关于汽油辛烷值损失值最小的单目标优化模型,为了提高模型的求解速率和准确度,基于sigmoid函数的收敛因子调整策略和个体更新的差分变异策略,提出了一种改进的差分灰狼优化算法。结果表明,优化后的样本辛烷值损失值均减小到0.4左右,同时86.15%的样本辛烷值损失降幅在60%~80%之间,说明建立的优化模型和所提出的改进差分灰狼优化算法是合理的。通过数据挖掘技术建立的降低汽油辛烷值损失模型可以尽量减少汽油精制过程中的辛烷值损失,为石化企业和运营商提供决策分析。 展开更多
关键词 辛烷值损失模型 权重法特征重要度融合 XGBoost模型 改进的差分灰狼优化算法
在线阅读 下载PDF
基于数据挖掘的船用通信网络异常行为分类和识别研究方法 被引量:7
2
作者 李瑛 杨丽娟 朱蓬华 《舰船科学技术》 北大核心 2023年第21期181-184,共4页
为保证船用通信网络的安全,设计基于深度数据挖掘的船用通信网络异常行为分类和识别方法。该方法数据处理模块采用全局信息数据融合策略,融合网络的原始采集数据,特征选择模块通过平均不纯度减少特征重要度计算方法,选择有效特征并计算... 为保证船用通信网络的安全,设计基于深度数据挖掘的船用通信网络异常行为分类和识别方法。该方法数据处理模块采用全局信息数据融合策略,融合网络的原始采集数据,特征选择模块通过平均不纯度减少特征重要度计算方法,选择有效特征并计算该特征重要度后,形成特征集,将其输入分类识别模块的内外卷积网络深度学习网络模型中,通过模型的学习和训练,获取船用通信网络异常行为分类识别结果。测试结果显示:该方法可有效删除其中的无效特征,保留有效特征结果;可获取不同类别有效特征标签的重要度评分结果;分类识别的平均绝对误差均低于0.18,可完成不同流量变化下异常行为分类识别。 展开更多
关键词 数据挖掘 船用通信网络 异常行为 分类识别 特征重要 数据融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部