期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种权重平均值的深度双Q网络方法 被引量:6
1
作者 吴金金 刘全 +1 位作者 陈松 闫岩 《计算机研究与发展》 EI CSCD 北大核心 2020年第3期576-589,共14页
深度强化学习算法的不稳定性和可变性对其性能有重要的影响.深度Q网络模型在处理需要感知高维输入数据的决策控制任务中性能良好.然而,深度Q网络存在着高估动作值使agent性能变差的问题.尽管深度双Q网络能够缓解高估带来的影响,但是仍... 深度强化学习算法的不稳定性和可变性对其性能有重要的影响.深度Q网络模型在处理需要感知高维输入数据的决策控制任务中性能良好.然而,深度Q网络存在着高估动作值使agent性能变差的问题.尽管深度双Q网络能够缓解高估带来的影响,但是仍然存在低估动作值的问题.在一些复杂的强化学习环境中,即使是很小的估计误差也会对学习到的策略产生很大影响.为了解决深度Q网络中高估动作值和深度双Q网络中低估动作值的问题,提出一种基于权重平均值的深度双Q网络方法(averaged weighted double deep Q-network,AWDDQN),该方法将带权重的双估计器整合到深度双Q网络中.为了进一步地减少目标值的估计误差,通过计算之前学习到的动作估计值的平均值来产生目标值,并且根据时间差分误差动态地确定平均动作值的数量.实验结果表明:AWDDQN方法可以有效减少估计偏差,并且能够提升agent在部分Atari 2600游戏中的表现. 展开更多
关键词 深度强化学习 深度Q网络 估计误差 权重双估计器 时间差分
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部