期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ICEEMD及AWOA优化ELM的机械故障诊断方法 被引量:29
1
作者 张淑清 苑世钰 +2 位作者 姚玉永 穆勇 王丽丽 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第11期172-180,共9页
旋转机械设备故障检测及识别一直是研究的热点。针对目前故障特征提取和诊断方法的不足,提出一种基于改进的完备集合经验模态分解(ICEEMD)与自适应鲸鱼优化算法(AWOA)优化极限学习机(ELM)的机械故障诊断方法。ICEEMD能够避免在分解过程... 旋转机械设备故障检测及识别一直是研究的热点。针对目前故障特征提取和诊断方法的不足,提出一种基于改进的完备集合经验模态分解(ICEEMD)与自适应鲸鱼优化算法(AWOA)优化极限学习机(ELM)的机械故障诊断方法。ICEEMD能够避免在分解过程中产生伪模态,其模式中残留噪声小,使提取故障信息更加准确。利用ICEEMD将采集到的信号分解成多个本征模态函数(IMF),对滚动轴承不同故障状态IMF的斯皮尔曼等级相关系数(SRCC)的计算结果进行分析,得出筛选IMF的标准为其SRCC大于0.02;将筛选后的IMF的混合熵(HE)作为特征向量。WOA相比其他仿生算法所需要调整的相关参数少、收敛速度快、稳定性好。AWOA利用自适应权重优化WOA的局部搜索方式,进一步提高了收敛精度。利用AWOA对ELM的权值和阈值进行优化,可以提高故障诊断的准确率。通过对比实验证明,AWOA-ELM的学习能力强、故障诊断的准确率更高。AWOA-ELM应用在滚动轴承不同尺寸滚珠和外圈故障诊断中,对滚珠故障诊断的准确率达到99.5%,对外圈故障诊断的准确率达到100%。 展开更多
关键词 改进的完备集合经验模态分解 混合熵 自适应鲸鱼算法优化极限学习机 机械故障诊断方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部