期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高维小样本数据环境下基于SOA-SVM的机械故障分类研究
被引量:
2
1
作者
林伟强
谢运佳
《机床与液压》
北大核心
2021年第18期183-187,共5页
针对现有SVM分类算法在高维小样本故障特征分类、适应度函数选择及核心参数优化方面存在的不足,提出一种基于SOA-SVM的机械故障分类算法。利用小波阈值函数对原始故障信号做降噪预处理,基于SOA算法模拟人群的几种随机行为,选择故障数据...
针对现有SVM分类算法在高维小样本故障特征分类、适应度函数选择及核心参数优化方面存在的不足,提出一种基于SOA-SVM的机械故障分类算法。利用小波阈值函数对原始故障信号做降噪预处理,基于SOA算法模拟人群的几种随机行为,选择故障数据点最优的移动方向和移动步长,最后寻找到距离SVM分类器超平面几何距离最佳的位置,提升经典SVM分类器的故障数据分类性能。仿真结果表明:提出的故障分类算法具有更强的参数优化性能,在对多个高维小样本数据集的分类中可以获得更高的分类精度。
展开更多
关键词
高维小样本
SOA-SVM算法
机械故障分类
在线阅读
下载PDF
职称材料
题名
高维小样本数据环境下基于SOA-SVM的机械故障分类研究
被引量:
2
1
作者
林伟强
谢运佳
机构
广州科技贸易职业学院
中山大学资讯管理学院
出处
《机床与液压》
北大核心
2021年第18期183-187,共5页
文摘
针对现有SVM分类算法在高维小样本故障特征分类、适应度函数选择及核心参数优化方面存在的不足,提出一种基于SOA-SVM的机械故障分类算法。利用小波阈值函数对原始故障信号做降噪预处理,基于SOA算法模拟人群的几种随机行为,选择故障数据点最优的移动方向和移动步长,最后寻找到距离SVM分类器超平面几何距离最佳的位置,提升经典SVM分类器的故障数据分类性能。仿真结果表明:提出的故障分类算法具有更强的参数优化性能,在对多个高维小样本数据集的分类中可以获得更高的分类精度。
关键词
高维小样本
SOA-SVM算法
机械故障分类
Keywords
High dimensional small sample
SOA-SVM algorithm
Mechanical fault classification
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
高维小样本数据环境下基于SOA-SVM的机械故障分类研究
林伟强
谢运佳
《机床与液压》
北大核心
2021
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部