The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared thro...The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.展开更多
The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning elec...The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry, and electron probe micro-analysis (EPMA). The results showed that the grains of aluminum alloy were significantly refined and secondary phases were dispersed and distributed uniformly at the grain boundaries, due to ultrasonic treatment (UST). By EPMA, it was observed that the distribution of the main elements A1, Zn, Mg and Cu was more homogeneous in alloys with UST, than in alloys without UST. The mechanical properties of the aluminum alloy also significantly improved. As demonstrated by the SEM fractography of the fractured faces of several castings, fracture of the unrefined specimens occurred in a brittle manner, whereas the cracks of the refined specimens showed quasi-cleavage fracture.展开更多
基金Project(2014CB046702) supported by the National Basic Research Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.
基金Project(2016GK1004)supported by the Science and Technology Major Project of Hunan Province,China
文摘The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry, and electron probe micro-analysis (EPMA). The results showed that the grains of aluminum alloy were significantly refined and secondary phases were dispersed and distributed uniformly at the grain boundaries, due to ultrasonic treatment (UST). By EPMA, it was observed that the distribution of the main elements A1, Zn, Mg and Cu was more homogeneous in alloys with UST, than in alloys without UST. The mechanical properties of the aluminum alloy also significantly improved. As demonstrated by the SEM fractography of the fractured faces of several castings, fracture of the unrefined specimens occurred in a brittle manner, whereas the cracks of the refined specimens showed quasi-cleavage fracture.