净生态系统CO_(2)交换量(NEE)和蒸散(ET)是表征半干旱区生态系统碳水循环能力的重要指标。对碳水通量动态变化的准确模拟和驱动机制的深入分析,有助于明确黄土高原半干旱区草地生态系统的功能及其对气候变化的响应。基于黄土高原铁杆蒿...净生态系统CO_(2)交换量(NEE)和蒸散(ET)是表征半干旱区生态系统碳水循环能力的重要指标。对碳水通量动态变化的准确模拟和驱动机制的深入分析,有助于明确黄土高原半干旱区草地生态系统的功能及其对气候变化的响应。基于黄土高原铁杆蒿草地生态系统2018—2022年日尺度通量观测数据,使用多元线性回归模型、机器学习模型(随机森林、支持向量机和人工神经网络模型)和融合生态学知识与机器学习的生态知识-机器学习(EML)模型分别对NEE和ET进行拟合。其中,有6种基于不同生态假设的EML模型用于拟合NEE,7种基于不同生态假设的EML模型用于拟合ET。最后构建拟合效果最好和解释能力最优的EML模型并探究环境和植被因素对NEE和ET的影响。结果表明:(1)包含了气象因素、土壤水分因素和植被因素的EML模型对NEE和ET的拟合效果最好,R2和RMSE分别为0.81和0.70 g C m^(-2)d^(-1),0.83和0.48 mm/d,MRE和MAE分别为1.72和0.48 g C m^(-2)d^(-1),0.29和0.30 mm/d。该模型在NEE和ET上的拟合能力较多元线性回归模型提升了24.62%和12.16%,较机器学习模型平均提升了13.02%和6.87%。(2)空气温度是NEE和ET的主要影响因素,重要性占比分别为63.12%和60.38%。6℃和22℃是草地NEE日均空气温度的阈值,在6—22℃之间NEE处于下降趋势,在22℃后NEE变为平稳趋势。0℃和22℃是草地ET日均空气温度的阈值,当空气温度大于22℃后,ET由上升趋势转变为平稳趋势。(3)土壤水分因素在NEE和ET的重要影响因素中的占比分别为17.13%和5.66%,NEE对土壤水分的敏感性高于ET。研究结果有助于完善半干旱区草地生态系统碳水通量的模拟方法,并明确其对环境和植被因素的响应。展开更多
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection...Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance.展开更多
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal...Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.展开更多
文摘净生态系统CO_(2)交换量(NEE)和蒸散(ET)是表征半干旱区生态系统碳水循环能力的重要指标。对碳水通量动态变化的准确模拟和驱动机制的深入分析,有助于明确黄土高原半干旱区草地生态系统的功能及其对气候变化的响应。基于黄土高原铁杆蒿草地生态系统2018—2022年日尺度通量观测数据,使用多元线性回归模型、机器学习模型(随机森林、支持向量机和人工神经网络模型)和融合生态学知识与机器学习的生态知识-机器学习(EML)模型分别对NEE和ET进行拟合。其中,有6种基于不同生态假设的EML模型用于拟合NEE,7种基于不同生态假设的EML模型用于拟合ET。最后构建拟合效果最好和解释能力最优的EML模型并探究环境和植被因素对NEE和ET的影响。结果表明:(1)包含了气象因素、土壤水分因素和植被因素的EML模型对NEE和ET的拟合效果最好,R2和RMSE分别为0.81和0.70 g C m^(-2)d^(-1),0.83和0.48 mm/d,MRE和MAE分别为1.72和0.48 g C m^(-2)d^(-1),0.29和0.30 mm/d。该模型在NEE和ET上的拟合能力较多元线性回归模型提升了24.62%和12.16%,较机器学习模型平均提升了13.02%和6.87%。(2)空气温度是NEE和ET的主要影响因素,重要性占比分别为63.12%和60.38%。6℃和22℃是草地NEE日均空气温度的阈值,在6—22℃之间NEE处于下降趋势,在22℃后NEE变为平稳趋势。0℃和22℃是草地ET日均空气温度的阈值,当空气温度大于22℃后,ET由上升趋势转变为平稳趋势。(3)土壤水分因素在NEE和ET的重要影响因素中的占比分别为17.13%和5.66%,NEE对土壤水分的敏感性高于ET。研究结果有助于完善半干旱区草地生态系统碳水通量的模拟方法,并明确其对环境和植被因素的响应。
基金Project(G2022165004L)supported by the High-end Foreign Expert Introduction Program,ChinaProject(2021XM3008)supported by the Special Foundation of Postdoctoral Support Program,Chongqing,China+1 种基金Project(2018-ZL-01)supported by the Sichuan Transportation Science and Technology Project,ChinaProject(HZ2021001)supported by the Chongqing Municipal Education Commission,China。
文摘Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance.
基金Project (SGKJ[200301-16]) supported by the State Grid Cooperation of China
文摘Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.