期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
机器学习方法在基因功能注释中的应用 被引量:1
1
作者 李金城 廖奇 沈其君 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2016年第5期496-503,共8页
目前,基于计算机数学方法对基因的功能注释已成为热点及挑战,其中以机器学习方法应用最为广泛。生物信息学家不断提出有效、快速、准确的机器学习方法用于基因功能的注释,极大促进了生物医学的发展。本文就关于机器学习方法在基因功能... 目前,基于计算机数学方法对基因的功能注释已成为热点及挑战,其中以机器学习方法应用最为广泛。生物信息学家不断提出有效、快速、准确的机器学习方法用于基因功能的注释,极大促进了生物医学的发展。本文就关于机器学习方法在基因功能注释的应用与进展作一综述。主要介绍几种常用的方法,包括支持向量机、k近邻算法、决策树、随机森林、神经网络、马尔科夫随机场、logistic回归、聚类算法和贝叶斯分类器,并对目前机器学习方法应用于基因功能注释时如何选择数据源、如何改进算法以及如何提高预测性能上进行讨论。 展开更多
关键词 功能注释 机器学习法 功能预测 基因
在线阅读 下载PDF
基于随机森林模型识别浅层地下水TDS异常的方法研究 被引量:2
2
作者 褚宴佳 何宝南 +1 位作者 陈珍 何江涛 《地学前缘》 北大核心 2025年第2期456-468,共13页
准确识别人类活动引起的地下水水化学异常对于确定地下水水化学组分的背景值,合理开展地下水污染评价至关重要。溶解性总固体(TDS)作为地下水水化学的综合指标,其值的高低直接反映了地下水水质的好坏。目前,水化学图法在地下水TDS的异... 准确识别人类活动引起的地下水水化学异常对于确定地下水水化学组分的背景值,合理开展地下水污染评价至关重要。溶解性总固体(TDS)作为地下水水化学的综合指标,其值的高低直接反映了地下水水质的好坏。目前,水化学图法在地下水TDS的异常值识别中取得了较好的效果,但是,其基本原理是基于主要离子组分构成的水化学类型异常必然导致TDS异常的假设,而进行的反向异常识别,可能存在过度识别的情况。为此,本文以沙颍河流域浅层地下水为研究对象,从TDS成因机制出发,提出了采用随机森林模型结合数理统计的正向识别方法,对研究区内浅层地下水TDS的异常值进行识别,并开展了多种方法异常值识别效果的对比研究。结果表明,机器学习法能够有效地识别出地下水TDS异常值,其识别出的地下水TDS阈值与其他方法较为一致。但相比之下,机器学习法从TDS成因机制角度识别异常,能够有效避免水化学图存在的过度识别问题,而且能够区分高、低异常,为TDS异常识别提供了另外一种有效的思路和方法,丰富了地下水环境背景值的研究思路。 展开更多
关键词 地下水环境背景值 TDS 异常值 机器学习法 沙颍河流域
在线阅读 下载PDF
缺失值填补效果:机器学习与统计学习的比较 被引量:20
3
作者 陈娟 王献雨 +1 位作者 罗玲玲 崔晶晶 《统计与决策》 CSSCI 北大核心 2020年第17期28-32,共5页
数据缺失是众多影响数据质量的因素中最常见的一种。如果处理不好缺失数据,就会直接影响分析结果的可靠性,进而达不到分析的目的。文章以医疗领域的缺失值问题为例,通过灵敏度、准确率和Kappa值三个指标来比较分析机器填补法和统计填补... 数据缺失是众多影响数据质量的因素中最常见的一种。如果处理不好缺失数据,就会直接影响分析结果的可靠性,进而达不到分析的目的。文章以医疗领域的缺失值问题为例,通过灵敏度、准确率和Kappa值三个指标来比较分析机器填补法和统计填补法在不同缺失率下的填补效果。研究结果表明,在注重小比例人群的医疗领域,机器学习方法表现突出,该方法在三个方面皆优于统计填补法。另外,随着缺失率的增长,两种填补方法的效果都有所下降,但值得注意的是,即使缺失率很高时,机器学习方法的填补效果仍然优于统计方法,且具有很高的稳定性。 展开更多
关键词 机器学习法 统计方 填补 缺失率
在线阅读 下载PDF
城市经济学模型与实证方法的研究进展与趋势 被引量:7
4
作者 刘修岩 陈露 李松林 《西安交通大学学报(社会科学版)》 CSSCI 北大核心 2021年第3期25-34,共10页
城市经济学作为一门独立学科,近年来得到越来越多国内外学者的重视和关注,因兼具交叉和新兴学科的特征,其理论体系和研究方法还处于不断探索阶段。本文从城市经济学的理论核心出发,对其基础理论框架与实证研究方法进行了总结与归纳。在... 城市经济学作为一门独立学科,近年来得到越来越多国内外学者的重视和关注,因兼具交叉和新兴学科的特征,其理论体系和研究方法还处于不断探索阶段。本文从城市经济学的理论核心出发,对其基础理论框架与实证研究方法进行了总结与归纳。在理论模型方面,主要梳理了城市经济学学科内最具影响力与基础性的城市内部模型(AMM模型)和跨城市间模型(R&R模型);在实证研究方面,主要梳理了经典的因果推断方法(工具变量、双重差分与断点回归)、结构式估计、大数据技术分析与机器学习方法。指出中国的城市经济学学者应当进一步利用城市经济学的理论模型讲好具有中国特色的城市建设与发展故事,运用丰富的中国城市发展时空大数据与实证证据为中国的城市化实践服务。 展开更多
关键词 城市经济学 城市内部模型 跨城市间模型 因果推断 工具变量 双重差分 断点回归 结构式估计 大数据技术 机器学习法
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
5
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
Thickness of excavation damaged zone estimation using four novel hybrid ensemble learning models : A case study of Xiangxi Gold Mine and Fankou Lead-zinc Mine in China
6
作者 LIU Lei-lei HONG Zhi-xian +1 位作者 ZHAO Guo-yan LIANG Wei-zhang 《Journal of Central South University》 CSCD 2024年第11期3965-3982,共18页
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick... Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting. 展开更多
关键词 excavation damaged zone machine learning simulated annealing Bayesian optimization extreme gradient boosting random forest
在线阅读 下载PDF
肺癌患者术中低体温风险预测模型的构建及验证 被引量:7
7
作者 曾昕 卢秀英 +2 位作者 周羽 蔡思雪 杨舒涵 《中国护理管理》 CSCD 2023年第10期1500-1506,共7页
目的:构建并验证肺癌患者术中低体温风险预测模型,为临床医护人员识别术中低体温高危人群提供参考。方法:选取四川省某三级甲等肿瘤专科医院2022年6月—11月的肺癌手术患者,按照7:3的比例随机分为训练集(770例)和验证集(330例)。使用R... 目的:构建并验证肺癌患者术中低体温风险预测模型,为临床医护人员识别术中低体温高危人群提供参考。方法:选取四川省某三级甲等肿瘤专科医院2022年6月—11月的肺癌手术患者,按照7:3的比例随机分为训练集(770例)和验证集(330例)。使用R语言中Logistic回归、XGBoost、随机森林、支持向量机4种机器学习算法构建预测模型,并对其性能进行比较,得到最优的肺癌患者术中低体温预测模型算法,并在验证集患者中进行模型验证。结果:术中低体温发生率为53.2%。术中出血量、术中输液量、手术时间、麻醉时间、手术室温度、麻醉后核心体温、手术切除部位是肺癌患者术中低体温的影响因素。随机森林模型训练集和验证集的ROC曲线下面积均为0.968,其性能优于其他3种预测模型。结论:基于随机森林算法的模型是最优的肺癌患者术中低体温预测模型,有利于临床筛选术中低体温高危人群,可为医护人员早期采取有针对性的预防措施提供借鉴。 展开更多
关键词 肺癌 低体温 列线图 机器学习法 XGBoost 随机森林 支持向量机
在线阅读 下载PDF
无线电报务训练装置设计 被引量:1
8
作者 左衍琴 张敬秋 朱俊 《无线电通信技术》 2014年第1期68-70,共3页
针对以往无线电报务训练装置硬件成本要求高和码字识别率低等问题,设计了一种基于PC的无线电报务训练装置,它具有发报和收报训练功能,对码字识别效率较高。同时,在码字识别算法上,采用了快速傅里叶变换(FFT)算法对装置进行频域识别,有... 针对以往无线电报务训练装置硬件成本要求高和码字识别率低等问题,设计了一种基于PC的无线电报务训练装置,它具有发报和收报训练功能,对码字识别效率较高。同时,在码字识别算法上,采用了快速傅里叶变换(FFT)算法对装置进行频域识别,有效提高了抗干扰性。分别采用最大类间方差法和机器学习法,有效提高了码字识别的适应能力和准确性。 展开更多
关键词 无线电报务 点划码FFT算 最大类间方差 机器学习法
在线阅读 下载PDF
Prediction of dust fall concentrations in urban atmospheric environment through support vector regression 被引量:2
9
作者 焦胜 曾光明 +3 位作者 何理 黄国和 卢宏玮 高青 《Journal of Central South University》 SCIE EI CAS 2010年第2期307-315,共9页
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study... Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively. 展开更多
关键词 support vector regression urban air quality dust fall soeio-economic factors radial basis function
在线阅读 下载PDF
Parallel solving model for quantified boolean formula based on machine learning
10
作者 李涛 肖南峰 《Journal of Central South University》 SCIE EI CAS 2013年第11期3156-3165,共10页
A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance ... A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system. 展开更多
关键词 machine learning quantified boolean formula parallel solving knowledge sharing feature extraction performance prediction
在线阅读 下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
11
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部