期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MS PUF:抗机器学习建模攻击的多维协同强PUF设计
1
作者 左欣怡 马双宝 +3 位作者 李少青 王振宇 刘威 张洋 《计算机工程》 北大核心 2025年第8期62-73,共12页
物理不可克隆函数(PUF)在资源受限的信息安全领域起着至关重要的作用,然而广泛使用的仲裁器PUF(APUF)及其变体因结构简单和防御维度单一,面临机器学习建模攻击的威胁,同时具有高防御能力的PUF设计通常伴随着较高的硬件成本。为应对这些... 物理不可克隆函数(PUF)在资源受限的信息安全领域起着至关重要的作用,然而广泛使用的仲裁器PUF(APUF)及其变体因结构简单和防御维度单一,面临机器学习建模攻击的威胁,同时具有高防御能力的PUF设计通常伴随着较高的硬件成本。为应对这些挑战,提出一种新型的多维协同PUF(MS PUF)设计,旨在平衡强大的抗建模攻击能力和低硬件开销。该设计以APUF为基础,融合了弱PUF、线性反馈移位寄存器(LFSR)和多路复用器(MUX),通过异或操作混淆输入信号并动态控制MUX输出,增强了PUF响应的安全性和不可预测性。在此设计中,MUX的输出有两种选择:一是直接采用弱PUF序列,二是通过分组异或处理并采用由弱PUF初始化的LFSR生成的序列。此外,MS PUF通过引入逐层异或混淆机制,构筑了一个多层次、多维度的协同安全防御策略。实验结果表明,MS PUF在均匀性、唯一性和可靠性等关键性能指标上表现优异,且硬件开销低,在防御逻辑回归(LR)、支持向量机(SVM)、人工神经网络(ANN)、卷积神经网络(CNN)以及全连接长短时记忆(FC-LSTM)网络等多种机器学习建模攻击时,MS PUF的预测准确率均接近50%,展示了出色的防御能力。 展开更多
关键词 仲裁器物理不可克隆函数 机器学习建模攻击 硬件开销 多维协同PUF 逐层异或混淆机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部