期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
MS PUF:抗机器学习建模攻击的多维协同强PUF设计
1
作者
左欣怡
马双宝
+3 位作者
李少青
王振宇
刘威
张洋
《计算机工程》
北大核心
2025年第8期62-73,共12页
物理不可克隆函数(PUF)在资源受限的信息安全领域起着至关重要的作用,然而广泛使用的仲裁器PUF(APUF)及其变体因结构简单和防御维度单一,面临机器学习建模攻击的威胁,同时具有高防御能力的PUF设计通常伴随着较高的硬件成本。为应对这些...
物理不可克隆函数(PUF)在资源受限的信息安全领域起着至关重要的作用,然而广泛使用的仲裁器PUF(APUF)及其变体因结构简单和防御维度单一,面临机器学习建模攻击的威胁,同时具有高防御能力的PUF设计通常伴随着较高的硬件成本。为应对这些挑战,提出一种新型的多维协同PUF(MS PUF)设计,旨在平衡强大的抗建模攻击能力和低硬件开销。该设计以APUF为基础,融合了弱PUF、线性反馈移位寄存器(LFSR)和多路复用器(MUX),通过异或操作混淆输入信号并动态控制MUX输出,增强了PUF响应的安全性和不可预测性。在此设计中,MUX的输出有两种选择:一是直接采用弱PUF序列,二是通过分组异或处理并采用由弱PUF初始化的LFSR生成的序列。此外,MS PUF通过引入逐层异或混淆机制,构筑了一个多层次、多维度的协同安全防御策略。实验结果表明,MS PUF在均匀性、唯一性和可靠性等关键性能指标上表现优异,且硬件开销低,在防御逻辑回归(LR)、支持向量机(SVM)、人工神经网络(ANN)、卷积神经网络(CNN)以及全连接长短时记忆(FC-LSTM)网络等多种机器学习建模攻击时,MS PUF的预测准确率均接近50%,展示了出色的防御能力。
展开更多
关键词
仲裁器物理不可克隆函数
机器学习建模攻击
硬件开销
多维协同PUF
逐层异或混淆机制
在线阅读
下载PDF
职称材料
题名
MS PUF:抗机器学习建模攻击的多维协同强PUF设计
1
作者
左欣怡
马双宝
李少青
王振宇
刘威
张洋
机构
武汉纺织大学机械工程与自动化学院
国防科技大学计算机学院先进微处理器芯片与系统重点实验室
出处
《计算机工程》
北大核心
2025年第8期62-73,共12页
基金
国家自然科学基金(61832018)。
文摘
物理不可克隆函数(PUF)在资源受限的信息安全领域起着至关重要的作用,然而广泛使用的仲裁器PUF(APUF)及其变体因结构简单和防御维度单一,面临机器学习建模攻击的威胁,同时具有高防御能力的PUF设计通常伴随着较高的硬件成本。为应对这些挑战,提出一种新型的多维协同PUF(MS PUF)设计,旨在平衡强大的抗建模攻击能力和低硬件开销。该设计以APUF为基础,融合了弱PUF、线性反馈移位寄存器(LFSR)和多路复用器(MUX),通过异或操作混淆输入信号并动态控制MUX输出,增强了PUF响应的安全性和不可预测性。在此设计中,MUX的输出有两种选择:一是直接采用弱PUF序列,二是通过分组异或处理并采用由弱PUF初始化的LFSR生成的序列。此外,MS PUF通过引入逐层异或混淆机制,构筑了一个多层次、多维度的协同安全防御策略。实验结果表明,MS PUF在均匀性、唯一性和可靠性等关键性能指标上表现优异,且硬件开销低,在防御逻辑回归(LR)、支持向量机(SVM)、人工神经网络(ANN)、卷积神经网络(CNN)以及全连接长短时记忆(FC-LSTM)网络等多种机器学习建模攻击时,MS PUF的预测准确率均接近50%,展示了出色的防御能力。
关键词
仲裁器物理不可克隆函数
机器学习建模攻击
硬件开销
多维协同PUF
逐层异或混淆机制
Keywords
Arbiter Physical Unclonable Function(APUF)
machine learning modeling attack
hardware overhead
Multi-dimensional Synergistic PUF(MS PUF)
layered Exclusive OR(XOR)confusion mechanism
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
MS PUF:抗机器学习建模攻击的多维协同强PUF设计
左欣怡
马双宝
李少青
王振宇
刘威
张洋
《计算机工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部