期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的自然语言处理技术的发展及其在农业领域的应用 被引量:10
1
作者 崔运鹏 王健 刘娟 《农业大数据学报》 2019年第1期38-44,共7页
深度学习是本世纪出现的新一代机器学习技术,深度学习技术的发展与应用对现代自然语言处理技术产生了深远的影响。本文讨论了自然语言处理技术在深度学习技术的推动下所取得的主要进展,以及近几年自然语言处理领域出现的新的技术产品和... 深度学习是本世纪出现的新一代机器学习技术,深度学习技术的发展与应用对现代自然语言处理技术产生了深远的影响。本文讨论了自然语言处理技术在深度学习技术的推动下所取得的主要进展,以及近几年自然语言处理领域出现的新的技术产品和经典案例,特别分析并阐述了深度学习在文本词向量构建、磁性标注与命名实体识别相结合用于词义消歧、卷及神经网络文本自动分类、主题提取及文本内容相关性计算等关键自然语言处理任务中所发挥的重要作用,并介绍了词向量技术在水稻知识领域的作用、农业领域专有命名实体识别以及农业文献内容相关性计算等实际应用案例,并剖析了了相关技术实现细节。最后本文展望了今后一个时期自然语言处理技术的发展方向,以及其在农业领域的应用前景,并阐明了自然语言处理技术对农业领域智能化应用不可或缺的意义。 展开更多
关键词 农业大数据 自然语言处理 智慧农业 机器学习:数据挖掘
在线阅读 下载PDF
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
2
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部