期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
机器人的自适应分散跟踪控制
1
作者 王洪斌 吴健珍 +1 位作者 王洪瑞 宋维公 《燕山大学学报》 CAS 2001年第z1期49-52,共4页
提出了一种自适应分散控制策略,用于不确定性机器人的轨迹跟踪,该控制器结构简单,而且无需计算回归矩阵,通过对二自由度的机器人的仿真,证明该方法能使跟踪误差快速趋近于零.
关键词 不确定性机器人 轨迹跟踪 自适应控制.
在线阅读 下载PDF
基于饱和函数的不确定机器人模糊自适应滑模控制 被引量:2
2
作者 林雷 王洪瑞 胡雅楠 《机床与液压》 北大核心 2008年第3期137-140,79,共5页
针对模型和参数不确定机器人系统轨迹跟踪问题,在模糊自适应控制的基础上提出了一种新的控制策略,该控制策略把饱和函数、模糊原理与滑模控制有机结合起来,设计了一种模糊自适应滑模控制器。该控制器利用模糊逻辑系统为机器人的动力学... 针对模型和参数不确定机器人系统轨迹跟踪问题,在模糊自适应控制的基础上提出了一种新的控制策略,该控制策略把饱和函数、模糊原理与滑模控制有机结合起来,设计了一种模糊自适应滑模控制器。该控制器利用模糊逻辑系统为机器人的动力学系统建模,设计自适应律调节未知参数,为保证控制力矩输出平滑有界,不存在一般滑模变结构中的抖振现象,采用双曲正切函数代替传统的符号函数。利用李亚普诺夫定理证明了闭环控制系统全局稳定,跟踪误差渐近收敛于零。仿真结果表明了所提出的控制算法的有效性。 展开更多
关键词 机器人轨迹跟踪 模糊自适应控制 饱和函数
在线阅读 下载PDF
Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions 被引量:9
3
作者 高富东 潘存云 +1 位作者 韩艳艳 张湘 《Journal of Central South University》 SCIE EI CAS 2012年第7期1859-1868,共10页
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c... Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment. 展开更多
关键词 complex sea condition autonomous underwater vehicle (AUV) trajectory tracking sliding mode control
在线阅读 下载PDF
Dynamic modelling and PFL-based trajectory tracking control for underactuated cable-driven truss-like manipulator 被引量:3
4
作者 DING Shu-chen PENG Li +2 位作者 QIAO Shang-ling LIU Rong-qiang JOSEPHAT Bundi 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3127-3146,共20页
In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the... In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods. 展开更多
关键词 underactuated robot trajectory tracking control partial feedback linearization non-linear control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部