目的为提高医疗服务机器人同时定位与地图构建(SLAM)算法全局定位精度和实时性,提出基于点线特征SLAM(PL-SLAM)算法,并与ORB(oriented FAST and rotated BRIEF)-SLAM2算法进行比较。方法PL-SLAM算法在特征提取过程中在点特征的基础上增...目的为提高医疗服务机器人同时定位与地图构建(SLAM)算法全局定位精度和实时性,提出基于点线特征SLAM(PL-SLAM)算法,并与ORB(oriented FAST and rotated BRIEF)-SLAM2算法进行比较。方法PL-SLAM算法在特征提取过程中在点特征的基础上增加线段特征,根据融合后的点线特征,在复杂医疗环境内进行地图创建与全局定位。利用公开数据集EuRoc和KITTI对比PL-SLAM算法与ORB-SLAM2算法,测试医疗服务机器人的自主导航综合性能。结果与ORB-SLAM2算法相比,PL-SLAM算法在弱纹理环境下能够提取较多的点线特征,定位精度和实时性均有较大提升。其中旋转误差较ORB-SLAM2算法减小42.2%,运算速度提高55.9%。结论PL-SLAM算法能够有效提高医疗服务机器人全局定位精度和实时性。展开更多
传统的机器人定位导航方法在复杂建筑环境中存在精度不高、依赖传感器严重、无法有效处理动态障碍物等问题,导致其在实际应用中难以达到预期效果。为解决这些问题,引入了建筑信息模型(building information modeling,BIM)技术,借助BIM...传统的机器人定位导航方法在复杂建筑环境中存在精度不高、依赖传感器严重、无法有效处理动态障碍物等问题,导致其在实际应用中难以达到预期效果。为解决这些问题,引入了建筑信息模型(building information modeling,BIM)技术,借助BIM的几何和语义信息支持,在复杂环境中辅助机器人定位导航,为机器人提供更精确的环境感知和最优路径规划,减少与环境构件的碰撞风险,并提升任务执行的精准度和效率。比较论述了BIM技术在机器人定位、建图、路径规划等方面的应用现状,分析了其在建筑环境中的应用优势和挑战,并展望了未来在智能建筑和机器人智能化领域的应用前景。展开更多
现有大多数视觉同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)方法大部分基于静态环境假设,导致其在动态环境中的定位精度显著下降。为解决这一问题,本文提出一种结合目标检测和光流方法的对象级动态SLAM方法。该...现有大多数视觉同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)方法大部分基于静态环境假设,导致其在动态环境中的定位精度显著下降。为解决这一问题,本文提出一种结合目标检测和光流方法的对象级动态SLAM方法。该方法使用目标检测获取对象信息,结合光流和对象重投影技术来识别对象的动静属性,并剔除动态对象上的特征点。随后,寻找检测对象和地图中对象的最佳匹配关系。然后,在关键帧中优化静态对象,同时提出一种动态二次曲面优化策略,用于在对象地图中优化动态二次曲面模型,并追踪动态对象的运动轨迹。最后,重建稠密静态背景。在Bonn和TUM数据集上的实验表明,本文方法的绝对位姿精度提升约44.3%,相对位姿精度提升约19.0%。实验结果表明,本文方法在动态场景中能够实现更精确、更稳健的定位。为进一步验证系统的在线性能,本文还在真实动态场景中对该系统进行了测试,并达到了预期的结果。展开更多
移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据...移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。展开更多
同步定位与地图构建(S im u ltaneous loca lization and m app ing,SLAM)作为能使移动机器人实现全自主导航的工具近来倍受关注。本文对该领域的最新进展进行综述,特别侧重于一些旨在降低计算复杂度的简化算法的分析上,同时对它们进行...同步定位与地图构建(S im u ltaneous loca lization and m app ing,SLAM)作为能使移动机器人实现全自主导航的工具近来倍受关注。本文对该领域的最新进展进行综述,特别侧重于一些旨在降低计算复杂度的简化算法的分析上,同时对它们进行分类,并指出其优点和不足。本文首先建立了SLAM问题的一般模型,指出了解决SLAM问题的难点;然后详细分析了基于EKF的一些简化算法和基于其他估计思想的方法;最后,对于多机器人SLAM和主动SLAM等前沿课题进行了讨论,并指出了今后的研究方向。展开更多
文摘目的为提高医疗服务机器人同时定位与地图构建(SLAM)算法全局定位精度和实时性,提出基于点线特征SLAM(PL-SLAM)算法,并与ORB(oriented FAST and rotated BRIEF)-SLAM2算法进行比较。方法PL-SLAM算法在特征提取过程中在点特征的基础上增加线段特征,根据融合后的点线特征,在复杂医疗环境内进行地图创建与全局定位。利用公开数据集EuRoc和KITTI对比PL-SLAM算法与ORB-SLAM2算法,测试医疗服务机器人的自主导航综合性能。结果与ORB-SLAM2算法相比,PL-SLAM算法在弱纹理环境下能够提取较多的点线特征,定位精度和实时性均有较大提升。其中旋转误差较ORB-SLAM2算法减小42.2%,运算速度提高55.9%。结论PL-SLAM算法能够有效提高医疗服务机器人全局定位精度和实时性。
文摘传统的机器人定位导航方法在复杂建筑环境中存在精度不高、依赖传感器严重、无法有效处理动态障碍物等问题,导致其在实际应用中难以达到预期效果。为解决这些问题,引入了建筑信息模型(building information modeling,BIM)技术,借助BIM的几何和语义信息支持,在复杂环境中辅助机器人定位导航,为机器人提供更精确的环境感知和最优路径规划,减少与环境构件的碰撞风险,并提升任务执行的精准度和效率。比较论述了BIM技术在机器人定位、建图、路径规划等方面的应用现状,分析了其在建筑环境中的应用优势和挑战,并展望了未来在智能建筑和机器人智能化领域的应用前景。
文摘现有大多数视觉同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)方法大部分基于静态环境假设,导致其在动态环境中的定位精度显著下降。为解决这一问题,本文提出一种结合目标检测和光流方法的对象级动态SLAM方法。该方法使用目标检测获取对象信息,结合光流和对象重投影技术来识别对象的动静属性,并剔除动态对象上的特征点。随后,寻找检测对象和地图中对象的最佳匹配关系。然后,在关键帧中优化静态对象,同时提出一种动态二次曲面优化策略,用于在对象地图中优化动态二次曲面模型,并追踪动态对象的运动轨迹。最后,重建稠密静态背景。在Bonn和TUM数据集上的实验表明,本文方法的绝对位姿精度提升约44.3%,相对位姿精度提升约19.0%。实验结果表明,本文方法在动态场景中能够实现更精确、更稳健的定位。为进一步验证系统的在线性能,本文还在真实动态场景中对该系统进行了测试,并达到了预期的结果。
文摘移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。
文摘同步定位与地图构建(S im u ltaneous loca lization and m app ing,SLAM)作为能使移动机器人实现全自主导航的工具近来倍受关注。本文对该领域的最新进展进行综述,特别侧重于一些旨在降低计算复杂度的简化算法的分析上,同时对它们进行分类,并指出其优点和不足。本文首先建立了SLAM问题的一般模型,指出了解决SLAM问题的难点;然后详细分析了基于EKF的一些简化算法和基于其他估计思想的方法;最后,对于多机器人SLAM和主动SLAM等前沿课题进行了讨论,并指出了今后的研究方向。