期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
模糊化模型概率的IMM-SUPF机动面目标跟踪 被引量:1
1
作者 石杰 李银伢 +1 位作者 戚国庆 盛安冬 《四川大学学报(工程科学版)》 CSCD 北大核心 2017年第S1期139-145,共7页
为了提高跟踪系统对水面机动目标的跟踪能力,本文将水面目标建模为椭圆形面目标,提出一种模糊化模型概率的交互多模型(interacting multiple model,IMM)强无迹粒子滤波算法。首先,利用现代高分辨率雷达获得的面目标扩展测量,给出了基于... 为了提高跟踪系统对水面机动目标的跟踪能力,本文将水面目标建模为椭圆形面目标,提出一种模糊化模型概率的交互多模型(interacting multiple model,IMM)强无迹粒子滤波算法。首先,利用现代高分辨率雷达获得的面目标扩展测量,给出了基于面目标的跟踪测量方程。其次,将强无迹粒子滤波(strong unscented particle filter,SUPF)算法引入到IMM中得到IMM-SUPF。该SUPF算法利用强跟踪无迹卡尔曼滤波(strong tracking unscented Kalman filter,STUKF)产生粒子建议分布。由于STUKF采用渐消因子调整UKF的状态模型协方差和观测模型协方差的比例,使得建议分布更符合真实状态的后验概率分布,从而提高了IMM算法中子模型滤波器的估计精度。最后,基于模糊隶属度函数对粒子的模型概率进行模糊化,从而在提高真实模型滤波器中粒子模型概率的同时,减小非匹配模型滤波器中粒子模型概率,进而提高IMM算法的估计融合精度。Monte-Carlo仿真实验表明,相比于传统的基于质点目标的IMM-UPF算法,文中所提的基于面目标的IMM算法跟踪精度更高,且所提算法的误差超调量更小,收敛更快。此外,所提面目标IMM算法的跟踪精度也要高于面目标IMM-UPF算法。不同于传统的质点目标IMM算法,文中将水面目标建模为椭圆形面目标,并利用面目标扩展测量信息设计了模糊化模型概率的IMM-SUPF算法。该算法进一步提高了跟踪系统对水面机动目标的跟踪能力。 展开更多
关键词 交互多模型 机动面目标 强无迹粒子滤波 模型概率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部