期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
城市道路机动车不同车型对二次扬尘的贡献率 被引量:5
1
作者 张德礼 夏晓梅 +2 位作者 殷玮 胡环 李源恒 《上海理工大学学报》 CAS 北大核心 2010年第5期449-452,共4页
定量研究了城市道路机动车各车型对道路二次扬尘中总悬浮颗粒物(TSP)与可吸入颗粒物(PM10)的贡献率.在上海市杨浦区军工路部分路段采集TSP浓度、PM10浓度、气压、温度、风速及不同车型流量等数据,利用高斯扩散模型反推污染物源强,并据... 定量研究了城市道路机动车各车型对道路二次扬尘中总悬浮颗粒物(TSP)与可吸入颗粒物(PM10)的贡献率.在上海市杨浦区军工路部分路段采集TSP浓度、PM10浓度、气压、温度、风速及不同车型流量等数据,利用高斯扩散模型反推污染物源强,并据此计算出污染物单车排放因子.运用多元回归分析得知,小型车的两种污染物贡献率为负,中型车与大型车的贡献率为正,且大型车两污染物的贡献率分别为中型车的1.74倍和1.56倍. 展开更多
关键词 机动车车型 综合排放因子 回归分析 贡献率
在线阅读 下载PDF
基于改进卷积神经网络的机动车图像分类算法 被引量:3
2
作者 王茜 陈一民 丁友东 《计算机应用与软件》 北大核心 2018年第7期263-266,298,共5页
针对大型数据库的精细化车型分类应用较少、预处理复杂,且识别率不高等情况,提出基于改进卷积神经网络的机动车图像分类算法。算法构建了较之Googlenet V3层级更为简单的神经网络模型;基于该CNN网络,增加了基于样本质心距离的正样本保... 针对大型数据库的精细化车型分类应用较少、预处理复杂,且识别率不高等情况,提出基于改进卷积神经网络的机动车图像分类算法。算法构建了较之Googlenet V3层级更为简单的神经网络模型;基于该CNN网络,增加了基于样本质心距离的正样本保留方案,在缓解样本不均衡的同时,通过巩固类内边界增强了数据可分性;在网络的全连接层采用了基于神经元重要性分值的dropout方法,在去除无效神经元的同时,提升网络的识别效果。实验结果表明,该算法能更为有效地提取图像特征,较之Googlenet V3算法收敛快,训练耗时短,识别率更高,解决实际问题的能力更强。 展开更多
关键词 机动车车型 图像分类 卷积神经网络 难负样本挖掘 DROPOUT
在线阅读 下载PDF
Reliability-based robust multi-obj ective optimization of a 5-DOF vehicle vibration model subjected to random road profiles 被引量:2
3
作者 Abolfazl Khalkhali Morteza Sarmadi Sina Yousefi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期104-113,共10页
Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimizati... Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimization methods capable of providing the best trade-off designs compromising both criteria simultaneously. Although many studies have been performed on multi-objective optimization of vehicle suspension system, only a few of them have used probabilistic approaches considering effects of uncertainties in the design. However, it has been proved that optimum point obtained from deterministic optimization without taking into account the effects of uncertainties may lead to high-risk points instead of optimum ones. In this work, reliability-based robust multi-objective optimization of a 5 degree of freedom (5-DOF) vehicle suspension system is performed using method of non-dominated sorting genetic algorithm-II (NSGA-II) in conjunction with Monte Carlo simulation (MCS) to obtain best designs considering both comfort and handling. Road profile is modeled as a random function using power spectral density (PSD) which is in better accordance with reality. To accommodate the robust approach, the variance of all objective functions is also considered to be minimized. Also, to take into account the reliability criterion, a reliability-based constraint is considered in the optimization. A deterministic optimization has also been performed to compare the results with probabilistic study and some other deterministic studies in the literature. In addition, sensitivity analysis has been performed to reveal the effects of different design variables on objective functions. To introduce the best trade-off points from the obtained Pareto fronts, TOPSIS method has been employed. Results show that optimum design point obtained from probabilistic optimization in this work provides better performance while demonstrating very good reliability and robustness. However, other optimum points from deterministic optimizations violate the regarded constraints in the presence of uncertainties. 展开更多
关键词 probabilistic optimization vehicle suspension deterministic optimization RIDE handling genetic algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部