The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stres...The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.展开更多
基金Project(2023YFB3710503) supported by the National Key R&D Program of ChinaProject(52305439) supported by the National Natural Science Foundation of China。
文摘The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them.