期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于FGM-MRF模型的图像分割
1
作者 苗晓锋 高荣国 《微电子学与计算机》 CSCD 北大核心 2011年第6期92-94,99,共4页
利用Ward聚类将图像进行初始分割,其结果作为基于空间邻域信息马尔可夫随机场(MRF)模型对图像再次分割的初值,图像分割的先验概率采用Ising模型,通过有限高斯混合模型(FGM)描述图像像素灰度的条件概率分布,利用期望-最大(EM)算法估计条... 利用Ward聚类将图像进行初始分割,其结果作为基于空间邻域信息马尔可夫随机场(MRF)模型对图像再次分割的初值,图像分割的先验概率采用Ising模型,通过有限高斯混合模型(FGM)描述图像像素灰度的条件概率分布,利用期望-最大(EM)算法估计条件概率分布模型参数,用迭代条件模式(ICM)局部优化方法,获得最大后验概率(MAP)准则下的图像分割结果.通过与其他相关算法分割结果相比较,这种算法能够明显改善分割效果. 展开更多
关键词 图像分割 马尔可夫随机场模型 有限高斯混合模型 期望-最大算法
在线阅读 下载PDF
Maximum Likelihood Blind Separation of Convolutively Mixed Discrete Sources
2
作者 辜方林 张杭 朱德生 《China Communications》 SCIE CSCD 2013年第6期60-67,共8页
In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation proce... In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation procedure of the EM algorithm with a less computational load,the algorithm named Iterative Maximum Likelihood algorithm(IML) is proposed to calculate the likelihood and recover the source signals.An important feature of the ML approach is that it has robust performance in noise environments by treating the covariance matrix of the additive Gaussian noise as a parameter.Another striking feature of the ML approach is that it is possible to separate more sources than sensors by exploiting the finite alphabet property of the sources.Simulation results show that the proposed ML approach works well either in determined mixtures or underdetermined mixtures.Furthermore,the performance of the proposed ML algorithm is close to the performance with perfect knowledge of the channel filters. 展开更多
关键词 Blind Source Separation convolutive mixture EM Finite Alphabet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部