期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
缺失数据处理的期望-极大化算法与马尔可夫蒙特卡洛方法 被引量:16
1
作者 沐守宽 周伟 《心理科学进展》 CSSCI CSCD 北大核心 2011年第7期1083-1090,共8页
缺失数据普遍存在于心理学研究中,影响着统计推断。极大似然估计(MLE)与基于贝叶斯的多重借补(MI)是处理缺失数据的两类重要方法。期望-极大化算法(EM)是寻求MLE的一种强有力的方法。马尔可夫蒙特卡洛方法(MCMC)可以相对简易地实现MI,... 缺失数据普遍存在于心理学研究中,影响着统计推断。极大似然估计(MLE)与基于贝叶斯的多重借补(MI)是处理缺失数据的两类重要方法。期望-极大化算法(EM)是寻求MLE的一种强有力的方法。马尔可夫蒙特卡洛方法(MCMC)可以相对简易地实现MI,而且可以适用于复杂情况下的缺失数据处理。结合研究的需要讨论了实现这两类方法的适用软件。 展开更多
关键词 缺失数据 期望-极大化算法 马尔可夫蒙特卡洛方法 极大似然估计 多重借补
在线阅读 下载PDF
基于EM算法的极大似然分布式量化估计融合新方法 被引量:6
2
作者 徐振华 黄建国 张群飞 《电子与信息学报》 EI CSCD 北大核心 2011年第4期977-981,共5页
该文针对水下目标探测中的多传感器分布式量化估计融合问题,建立了分布式量化估计融合模型,在考虑信道噪声且其统计特性不完全已知条件下,充分利用EM算法在观测数据缺失时参数估计的优越性,提出了一种基于期望极大化(EM)算法的极大似然... 该文针对水下目标探测中的多传感器分布式量化估计融合问题,建立了分布式量化估计融合模型,在考虑信道噪声且其统计特性不完全已知条件下,充分利用EM算法在观测数据缺失时参数估计的优越性,提出了一种基于期望极大化(EM)算法的极大似然分布式量化估计融合新方法。该方法将未知的水声信道噪声参数以及局部量化器量化概率建模为EM算法中二元高斯混合模型参数,利用极大似然估计方法的估计不变性得到目标参数的估计融合结果。仿真实验表明:该方法在局部传感器观测样本数目大于5000和信噪比大于6 dB时与已有理想信道条件下的估计方法性能相当,该方法为水下目标探测中分布式量化估计融合系统的工程实现提供了理论依据。 展开更多
关键词 水下目标探测 期望极大化(em)算法 估计融合 极大似然
在线阅读 下载PDF
基于EM和贝叶斯网络的丢失数据填充算法 被引量:21
3
作者 李宏 阿玛尼 +1 位作者 李平 吴敏 《计算机工程与应用》 CSCD 北大核心 2010年第5期123-125,共3页
实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将E... 实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将EM和贝叶斯网络结合进行迭代确定最终更新器,同时得到填充后的完整数据集。实验结果表明,与经典填充算法相比,新算法具有更高的分类准确率,且节省了大量开销。 展开更多
关键词 丢失数据填充 参数更新器 最大期望算法(em) 贝叶斯网络
在线阅读 下载PDF
EM最优参数求解的概率粗糙集推荐算法 被引量:2
4
作者 王红 张燕平 +1 位作者 钱付兰 陈功平 《计算机科学与探索》 CSCD 北大核心 2016年第2期285-292,共8页
推荐系统根据用户对项目的历史评分实施推荐,评分矩阵的稀疏性导致推荐的先验知识不足,降低推荐准确率。粗糙集理论能够利用不完备知识实施有效推理,从而提出了基于人口统计学的概率粗糙集推荐模型,使用概率粗糙集理论划分等价类,降低... 推荐系统根据用户对项目的历史评分实施推荐,评分矩阵的稀疏性导致推荐的先验知识不足,降低推荐准确率。粗糙集理论能够利用不完备知识实施有效推理,从而提出了基于人口统计学的概率粗糙集推荐模型,使用概率粗糙集理论划分等价类,降低了评分矩阵稀疏性对推荐结果的影响。使用基于最大期望(expectation maximization,EM)思想的参数求解算法求解参数α和β的最优值,将Pawlak粗糙集的边界域分解到正域或负域中,提升推荐效果。实验结果表明,概率粗糙集模型能够有效提高在评分矩阵非常稀疏情况下的推荐准确率,其在Movie Lens数据集上的推荐准确率最高达到71.42%,覆盖率指标最高达到99.18%。 展开更多
关键词 粗糙集 推荐算法 参数求解 最大期望(em)算法
在线阅读 下载PDF
两对互作基因重组率EM算法估计的模拟研究 被引量:4
5
作者 章元明 盖钧镒 《南京农业大学学报》 CAS CSCD 北大核心 2001年第2期24-27,共4页
推导出存在上位性互作的两对连锁基因在F2 群体中各表型的概率和条件概率以便利用EM (expectationandmaximization :期望最大化 )算法估计重组率 ,还获得了重组率的标准误公式。通过MonteCarlo模拟发现 :用EM算法和Fisher法估计重组率... 推导出存在上位性互作的两对连锁基因在F2 群体中各表型的概率和条件概率以便利用EM (expectationandmaximization :期望最大化 )算法估计重组率 ,还获得了重组率的标准误公式。通过MonteCarlo模拟发现 :用EM算法和Fisher法估计重组率时其结果一致 ;前者易推广到两基因间具有上位性互作的情形 。 展开更多
关键词 期望大化 (em)算法 重组率 MONTECARLO模拟 基因互作 植物
在线阅读 下载PDF
一种快速、贪心的高斯混合模型EM算法研究 被引量:3
6
作者 邢长征 苑聪 《计算机工程与应用》 CSCD 北大核心 2015年第20期111-115,共5页
针对传统EM算法存在初始模型成分数目需要预先指定以及收敛速度随样本数目的增长而急剧减慢等问题,提出了一种快速、贪心的高斯混合模型EM算法。该算法采用贪心的策略以及对隐含参数设置适当阈值的方法,使算法能够快速收敛,从而在很少... 针对传统EM算法存在初始模型成分数目需要预先指定以及收敛速度随样本数目的增长而急剧减慢等问题,提出了一种快速、贪心的高斯混合模型EM算法。该算法采用贪心的策略以及对隐含参数设置适当阈值的方法,使算法能够快速收敛,从而在很少的迭代次数内获取高斯混合模型的模型成分数。该算法通过与传统EM算法、无监督EM算法和鲁棒EM算法的聚类结果进行比较,实验结果证明该算法具有很强的鲁棒性,并且能够提高算法的效率以及模型成分数的准确性。 展开更多
关键词 贪心 高斯混合模型 隐含参量 最大期望(em)算法
在线阅读 下载PDF
基于EM的模糊-粗糙集最近邻算法 被引量:1
7
作者 何力 卢冰原 《计算机工程》 CAS CSCD 北大核心 2010年第24期136-138,共3页
针对由类的重叠引起的训练样本模糊不确定性,以及属性不足引起的类边界粗糙不确定性,提出一种基于期望-最大化(EM)的模糊-粗糙集最近邻分类算法——EM-FRNN。利用UCI数据库的突发性水污染事件案例进行实验,实验结果表明,与朴素的KNN、... 针对由类的重叠引起的训练样本模糊不确定性,以及属性不足引起的类边界粗糙不确定性,提出一种基于期望-最大化(EM)的模糊-粗糙集最近邻分类算法——EM-FRNN。利用UCI数据库的突发性水污染事件案例进行实验,实验结果表明,与朴素的KNN、模糊最近邻算法、模糊粗糙最近邻算法相比,该算法的运算精度高且计算成本较低。 展开更多
关键词 最近邻 模糊-粗糙集 期望-最大化 em—FRNN算法
在线阅读 下载PDF
缺失数据下含几何分布的对数线性模型的EM算法(英文) 被引量:1
8
作者 王继霞 刘次华 《应用数学》 CSCD 北大核心 2009年第2期297-302,共6页
本文研究缺失数据下对数线性模型参数的极大似然估计问题.通过Monte-Carlo EM算法去拟合所提出的模型.其中,在期望步中利用Metropolis-Hastings算法产生一个缺失数据的样本,在最大化步中利用Newton-Raphson迭代使似然函数最大化.最后,... 本文研究缺失数据下对数线性模型参数的极大似然估计问题.通过Monte-Carlo EM算法去拟合所提出的模型.其中,在期望步中利用Metropolis-Hastings算法产生一个缺失数据的样本,在最大化步中利用Newton-Raphson迭代使似然函数最大化.最后,利用观测数据的Fisher信息得到参数极大似然估计的渐近方差和标准误差. 展开更多
关键词 条件期望 极大似然估计 em算法 Metropolis—Hastings算法 Newton—Raphson迭代
在线阅读 下载PDF
如何应用EM算法处理调研中的无回答问题 被引量:1
9
作者 鞠成晓 《统计与信息论坛》 2004年第2期90-92,96,共4页
在市场调研中,由于无回答情况所造成数据的缺失,给调查结果的估计带来一定困难。文章将通过对EM算法的介绍,讨论如何应用EM算法来解决调研中的无回答问题,并通过具体实例演示其操作过程。
关键词 em算法 无回答 期望 极大似然
在线阅读 下载PDF
改进批处理RPEM算法用于说话人识别
10
作者 项要杰 杨俊安 +1 位作者 李晋徽 杨瑞国 《计算机应用研究》 CSCD 北大核心 2013年第12期3579-3582,共4页
针对传统EM算法训练GMM不能充分利用训练数据所属高斯分量信息,从而在一定程度上影响说话人识别性能的缺陷,采用RPEM(竞争惩罚EM)算法训练GMM,并引入批处理RPEM算法解决RPEM算法运算量大、收敛速度慢的问题,同时针对RPEM和批处理RPEM算... 针对传统EM算法训练GMM不能充分利用训练数据所属高斯分量信息,从而在一定程度上影响说话人识别性能的缺陷,采用RPEM(竞争惩罚EM)算法训练GMM,并引入批处理RPEM算法解决RPEM算法运算量大、收敛速度慢的问题,同时针对RPEM和批处理RPEM算法训练时方差优化存在的问题进行了改进,提出了改进的批处理RPEM算法。在Chains说话人识别数据库上的实验表明,改进的批处理RPEM算法取得了相对于传统EM、RPEM以及批处理RPEM算法更好的性能,还极大地提高了训练效率,减小了运算量,说明了提出的改进批处理RPEM算法用于说话人识别时的有效性。 展开更多
关键词 说话人识别 期望大化算法 竞争惩罚em算法 批处理竞争惩罚em算法
在线阅读 下载PDF
基于EM算法的眼底OCT图像反卷积去模糊技术 被引量:1
11
作者 闫芳 宋双 +3 位作者 连剑 任衍具 尹义龙 郑元杰 《数据采集与处理》 CSCD 北大核心 2018年第2期299-305,共7页
光学相干层析成像技术(Optical coherence tomography,OCT)在视网膜检查中十分重要,然而在获取OCT图像时眼球运动或者散焦作用都可能引起图像的模糊,从而为临床诊断造成困难。因此,从模糊OCT图像中恢复出清晰图像的去模糊技术研究至关... 光学相干层析成像技术(Optical coherence tomography,OCT)在视网膜检查中十分重要,然而在获取OCT图像时眼球运动或者散焦作用都可能引起图像的模糊,从而为临床诊断造成困难。因此,从模糊OCT图像中恢复出清晰图像的去模糊技术研究至关重要。本文结合OCT成像原理,提出了一种基于最大期望(Expectation-maximization,EM)算法的OCT图像反卷积技术。该技术能够在一定程度上抑制OCT模糊图像中异常值对复原图像的干扰,从而有效去除OCT图像中的模糊。将本文技术与多种现有广义图像去模糊技术进行了实验比较,结果表明本文提出的复原OCT图像的反卷积算法在眼底OCT图像去模糊的细节恢复方面效果较好。 展开更多
关键词 图像处理 光学相干层析成像(OCT) 图像去模糊 最大期望(em)算法 眼底图像
在线阅读 下载PDF
Dirichlet混合样本的EM算法与动态聚类算法比较 被引量:5
12
作者 夏棒 EMILION Richard 王惠文 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第9期1805-1811,共7页
Dirichlet分布是一类包含正参数向量的连续多元概率分布,在比例结构问题中具有广泛的应用。针对Dirichlet混合样本的聚类问题,进行了最大期望(EM)算法和动态聚类算法研究。首先,推导其数学过程,并给出算法迭代步骤。然后,利用数字仿真实... Dirichlet分布是一类包含正参数向量的连续多元概率分布,在比例结构问题中具有广泛的应用。针对Dirichlet混合样本的聚类问题,进行了最大期望(EM)算法和动态聚类算法研究。首先,推导其数学过程,并给出算法迭代步骤。然后,利用数字仿真实验,比较了EM算法与动态聚类算法两种机器学习算法在Dirichlet混合样本中的聚类效果。最后,计算对数似然函数值、程序运行时间、收敛迭代次数、聚类正确率、真正率(TPR)和假正率(FPR) 6个评价指标。仿真实验结果表明,EM算法聚类正确率更高但是运算效率相对较低,而动态聚类算法运算效率较高但是损失了部分聚类正确率。因此,实际应用中建议综合权衡聚类正确率与运算效率的相对需求后,再选取合适算法进行Dirichlet混合样本聚类。 展开更多
关键词 Dirichlet分布 混合样本 最大期望(em)算法 动态聚类 机器学习
在线阅读 下载PDF
转录因子结合位点识别算法的研究 被引量:1
13
作者 王峻 郭茂祖 《电子学报》 EI CAS CSCD 北大核心 2007年第B12期83-89,共7页
转录因子结合位点的识别是生物信息学中的一个重要领域.本文从计算机等信息科学的角度,对转录因子结合位点的识别方法进行了综合分析,包括该问题的生物学意义、主要算法思想以及每种算法的优缺点.使用TRANSFAC数据库中几组样例对具... 转录因子结合位点的识别是生物信息学中的一个重要领域.本文从计算机等信息科学的角度,对转录因子结合位点的识别方法进行了综合分析,包括该问题的生物学意义、主要算法思想以及每种算法的优缺点.使用TRANSFAC数据库中几组样例对具有代表性的6种主要软件进行测试,对其结果进行了详细地比较分析.最后,在总结分析现有算法的基础上探讨了该领域进一步的研究方向. 展开更多
关键词 转录因子结合位点 模体 基于字串 期望大化(em)算法 吉布斯采样
在线阅读 下载PDF
基于最小二乘的多特征概率数据关联EM方法 被引量:3
14
作者 曾斯 江朝抒 陈祝明 《信号处理》 CSCD 北大核心 2011年第5期690-696,共7页
提出了一种多目标多特征信息的数据关联算法。在强噪声密集杂波环境下,针对传统PDA算法对多目标跟踪时出现精度较差的问题,在跟踪过程中融入目标的特征状态信息,利用期望极大化(EM)算法对目标状态估计的最小二乘(LS)误差函数迭代求最小... 提出了一种多目标多特征信息的数据关联算法。在强噪声密集杂波环境下,针对传统PDA算法对多目标跟踪时出现精度较差的问题,在跟踪过程中融入目标的特征状态信息,利用期望极大化(EM)算法对目标状态估计的最小二乘(LS)误差函数迭代求最小,将目标运动状态和特征联合的关联概率作为估计参数不断修正,从而获得对目标状态的最优估计。仿真结果表明,该算法能够增强区分目标和杂波的能力,减小相近特征量测所引起的跟踪误导,弱化对检测概率的依赖性,显著并稳定地提高对目标的跟踪精度。 展开更多
关键词 期望极大化(em) 最小二乘 多特征信息 目标跟踪
在线阅读 下载PDF
基于数据填补和连续属性的朴素贝叶斯算法 被引量:4
15
作者 李忠波 杨建华 刘文琦 《计算机工程与应用》 CSCD 北大核心 2016年第1期133-140,共8页
朴素贝叶斯算法(NB)在处理分类问题时通常假设训练样本的数值型连续属性满足正态分布,其分类精度也受到训练数据完整性的影响,而实际采样数据很难满足上述要求。针对数据缺失问题,基于期望最大值算法(EM),将朴素贝叶斯分类器利用已有的... 朴素贝叶斯算法(NB)在处理分类问题时通常假设训练样本的数值型连续属性满足正态分布,其分类精度也受到训练数据完整性的影响,而实际采样数据很难满足上述要求。针对数据缺失问题,基于期望最大值算法(EM),将朴素贝叶斯分类器利用已有的不完整数据进行参数学习;针对样本数值型连续属性非正态分布的情况,基于核密度估计,利用其分布密度(Distribution Density)和新的分析计算方法来求最大后验分布,同时用标准数据集的分类实验验证了改进的有效性。将改良的算法EM-DNB应用在生物工程蛋白质纯化工艺预测中,实验结果表明,预测精度有所提高。 展开更多
关键词 朴素贝叶斯(NB) 期望最大值(em)算法 连续属性 核密度估计 蛋白质纯化
在线阅读 下载PDF
基于RetinaNet的密集型钢筋计数改进算法 被引量:8
16
作者 明洪宇 陈春梅 +1 位作者 刘桂华 邓豪 《传感器与微系统》 CSCD 2020年第12期115-118,共4页
提出了一种基于RetinaNet目标检测框架,结合高斯混合模型(GMM)和期望最大化(EM)算法的钢筋计数方法。通过在RetinaNet特征提取后端增加Soft-IOU层以对预测框与真实框的交并比进行评估。借助Soft-IOU评估到的质量分数,生成钢筋目标检测... 提出了一种基于RetinaNet目标检测框架,结合高斯混合模型(GMM)和期望最大化(EM)算法的钢筋计数方法。通过在RetinaNet特征提取后端增加Soft-IOU层以对预测框与真实框的交并比进行评估。借助Soft-IOU评估到的质量分数,生成钢筋目标检测的高斯混合模型。针对RetinaNet原始框架对密集目标检测效果欠理想的问题,采用了基于EM算法的高斯混合聚类方法解决歧义检测以提高计数精度。实验结果表明:改进后的方法较RetinaNet算法平均精度提高了3.3%,计数均方根误差提升了64.2,具有很强的适应性。 展开更多
关键词 RetinaNet网络 期望大化(em)算法 钢筋计数 高斯混合模型
在线阅读 下载PDF
Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance 被引量:5
17
作者 LEI Ming HAN Chong-Zhao 《自动化学报》 EI CSCD 北大核心 2006年第1期28-37,共10页
A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online.... A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently. 展开更多
关键词 最大期望 IMM滤波器 em算法 参数估计 噪音识别
在线阅读 下载PDF
一种改进CPLS算法及其在过程监控中的应用
18
作者 李庆华 潘丰 赵忠盖 《系统仿真学报》 CAS CSCD 北大核心 2018年第2期622-628,共7页
CPLS(Concurrent PLS)对PLS分解的过程变量和质量变量的残差和主元进行进一步的提取,从而将变量投影到五个子空间,并由此构建了对过程变量和质量变量信息的完整监控框架。但是,在CPLS中,假设残差为可以求解的确定值,而残差本质上为随机... CPLS(Concurrent PLS)对PLS分解的过程变量和质量变量的残差和主元进行进一步的提取,从而将变量投影到五个子空间,并由此构建了对过程变量和质量变量信息的完整监控框架。但是,在CPLS中,假设残差为可以求解的确定值,而残差本质上为随机分布量。因此,采用随机模型及其基于随机模型的监控更能反应残差的特性。在基于CPLS的过程监控中,采用因子分析(FA)算法对PLS中的残差进行分析,建立了基于FA的改进CPLS模型,并构建了符合正态分布假设条件的监控指标,提高了监控指标与建模指标的一致性。 展开更多
关键词 CPLS 因子分析 期望大化(em)算法 过程监控
在线阅读 下载PDF
驾驶疲劳对危险化学品道路运输事故风险的影响规律 被引量:4
19
作者 陈文瑛 邵海莉 张沚芊 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期644-653,共10页
近年来,随着危险化学品使用量的急剧攀升,危险化学品道路运输事故率也呈现上升的趋势,且此类事故的发生往往会导致严重后果。为研究危险化学品道路运输事故动态风险变化规律,在修正贝叶斯网络模型基础上,利用2017—2021年历史数据进行... 近年来,随着危险化学品使用量的急剧攀升,危险化学品道路运输事故率也呈现上升的趋势,且此类事故的发生往往会导致严重后果。为研究危险化学品道路运输事故动态风险变化规律,在修正贝叶斯网络模型基础上,利用2017—2021年历史数据进行机器学习,根据驾驶疲劳程度计算得到“驾驶人行为”动态节点的状态转移概率矩阵,建立基于动态贝叶斯网络(Dynamic Bayesian Network,DBN)的危险化学品道路运输动态风险预测模型并进行推理分析。研究显示:在驾驶3 h内,驾驶人“疲劳驾驶”发生概率随时间推移而增加,但增幅有所下降;在最常见情境下,随驾驶人“疲劳驾驶”概率增加,“侧翻”和“碰撞”事故类型的发生概率明显增加,进而导致“泄漏”事故后果的发生概率有所增加;驾驶人“疲劳驾驶”概率增加会导致“有伤亡事故”发生概率增加,即加重事故的严重程度;在驾驶3 h内,“侧翻”“碰撞”“泄漏”和“有伤亡事故”发生概率的变化趋势与驾驶人“疲劳驾驶”发生概率的变化趋势一致。 展开更多
关键词 安全人体学 动态贝叶斯网络 最大期望(em)算法 危险化学品 道路运输 动态风险
在线阅读 下载PDF
非线性时间序列建模的混合自回归滑动平均模型 被引量:18
20
作者 王红军 田铮 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第6期875-881,共7页
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算... 提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征. 展开更多
关键词 混合自回归滑动平均模型 自相关 平稳性 期望极大化算法 条件异方差
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部