In this paper,we study the problem of privacy-preserving top-k keyword similarity search over outsourced cloud data.Taking edit distance as a measure of similarity,we first build up the similarity keyword sets for all...In this paper,we study the problem of privacy-preserving top-k keyword similarity search over outsourced cloud data.Taking edit distance as a measure of similarity,we first build up the similarity keyword sets for all the keywords in the data collection.We then calculate the relevance scores of the elements in the similarity keyword sets by the widely used tf-idf theory.Leveraging both the similarity keyword sets and the relevance scores,we present a new secure and efficient treebased index structure for privacy-preserving top-k keyword similarity search.To prevent potential statistical attacks,we also introduce a two-server model to separate the association between the index structure and the data collection in cloud servers.Thorough analysis is given on the validity of search functionality and formal security proofs are presented for the privacy guarantee of our solution.Experimental results on real-world data sets further demonstrate the availability and efficiency of our solution.展开更多
Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic infe...Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.展开更多
基金supported partly by the following funding agencies:the National Natural Science Foundation(No.61170274)the Innovative Research Groups of the National Natural Science Foundation(No.61121061)+1 种基金the National Key Basic Research Program of China (No.2011CB302506)Youth Scientific Research and Innovation Plan of Beijing University of Posts and Telecommunications(No. 2013RC1101)
文摘In this paper,we study the problem of privacy-preserving top-k keyword similarity search over outsourced cloud data.Taking edit distance as a measure of similarity,we first build up the similarity keyword sets for all the keywords in the data collection.We then calculate the relevance scores of the elements in the similarity keyword sets by the widely used tf-idf theory.Leveraging both the similarity keyword sets and the relevance scores,we present a new secure and efficient treebased index structure for privacy-preserving top-k keyword similarity search.To prevent potential statistical attacks,we also introduce a two-server model to separate the association between the index structure and the data collection in cloud servers.Thorough analysis is given on the validity of search functionality and formal security proofs are presented for the privacy guarantee of our solution.Experimental results on real-world data sets further demonstrate the availability and efficiency of our solution.
基金Supported by National Natural Science Foundation of China(No.61601039)financially supported by the State Key Research Development Program of China(Grant No.2016YFC0801407)+3 种基金financially supported by the Natural Science Foundation of Beijing Information Science & Technology University(No.1625008)financially supported by the Opening Project of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(NO.ICDD201607)Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(NO.SKLNST-2016-2-08)financially supported by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(Grant No.CIT&TCD201504056)
文摘Many ontologies are provided to representing semantic sensors data.However,heterogeneity exists in different sensors which makes some service operators of Internet of Thing(IoT) difficult(such as such as semantic inferring,non-linear inverted index establishing,service composing) .There is a great deal of research about sensor ontology alignment dealing with the heterogeneity between the different sensor ontologies,but fewer solutions focus on exploiting syntaxes in a sensor ontology and the pattern of accessing alignments.Our solution infers alignments by extending structural subsumption algorithms to analyze syntaxes in a sensor ontology,and then combines the alignments with the SKOS model to construct the integration sensor ontology,which can be accessed via the IoT.The experiments show that the integration senor ontology in the SKOS model can be utilized via the IoT service,and the accuracy of our prototype,in average,is higher than others over the four real ontologies.