为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提...为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提出一种基于有限控制集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)原理对系统换流器桥臂晶体管开关状态进行控制的系统直流电压稳定控制策略。该策略结合机侧整流器及并网逆变器的电流预测模型,以换流器输出电流为控制变量构造代价函数,以代价函数为优化目标,为避免计算时延导致的控制延时,引入延时补偿提高控制准确度,并引入权重系数实现多目标优化,通过遍历计算产生最优开关组合信号触发换流器。在Matlab/Simulink中建立全直流风电系统的仿真模型,在不同工况下,对所提策略与传统PI控制进行对比仿真分析,仿真结果有效验证了所提控制策略的静态性能及动态性能。展开更多
永磁同步电机(permanent magnet synchronous motor,PMSM)具有高效率、高功率密度与高可靠性等优势,已在工业界得到广泛应用。文中针对PMSM驱动系统,提出基于拓展控制集的有限控制集无模型预测电流控制(finite-control-set model-free p...永磁同步电机(permanent magnet synchronous motor,PMSM)具有高效率、高功率密度与高可靠性等优势,已在工业界得到广泛应用。文中针对PMSM驱动系统,提出基于拓展控制集的有限控制集无模型预测电流控制(finite-control-set model-free predictive current control,FCS-MFPCC)。首先,分析PMSM系统的数学模型并详述有限控制集模型预测电流控制(finite-control-set model predictive current control,FCS-MPCC)的原理。其次,介绍基于线性扩张状态观测器(linear extended state observer,LESO)的传统FCS-MFPCC。针对传统FCS-MFPCC稳态性能不足的问题,采用基于离散空间矢量调制(discrete space vector modulation,DSVM)的控制集拓展方案,将控制集的电压矢量数目拓展至25。然后,为解决拓展控制集带来的高计算量问题,提出一种快速寻优策略,阐述该策略的实施原理与流程。最后,基于一台500 W PMSM实验平台,对比传统FCS-MFPCC与所提FCS-MFPCC的控制性能,验证所提算法的有效性与优越性。实验结果表明,所提算法能够有效提升系统稳态性能,且定子绕组电流总谐波畸变率由10.07%降低至6.48%。展开更多
电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Mod...电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Model predictive direct power control,MPDPC)对传统控制策略进行改进。首先建立了三相PWM整流器的数学模型,给出了每个采样周期内的功率变化率,并推导出相邻采样周期之间的功率关系,然后给出基于单矢量的模型预测直接功率控制策略,提出了基于双矢量的模型预测直接功率控制策略,并优选出两个电流矢量,计算在一个采样周期内的作用时间,并对其进行修正。最后,在Matlab/Simulink仿真软件验证了所提控制策略的可行性和有效性。展开更多
针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压...针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.展开更多
该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控...该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控制集模型预测电流控制(finite control set MPCC,FCS-MPCC)稳态性能较低。为此,文中采用具有818个可选矢量的ECS来实现更精细的电压输出。为减轻因电压矢量大幅增加而带来的计算负担,设计一种简化的最优矢量搜索策略,且可推广用于其他多目标成本函数。基于算法固有并行性,将所提ECS-MPCC方法在FPGA中进行实现,使电流环总控制时间缩短至0.59μs,从而可以消除计算延迟,提高电流环动态性能。最后,通过仿真和实验,验证所提ECS-MPCC策略的有效性。实验结果表明,与传统FCS-MPCC相比,ECS-MPCC的相电流总谐波失真降低77%。展开更多
针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预...针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。展开更多
文摘为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提出一种基于有限控制集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)原理对系统换流器桥臂晶体管开关状态进行控制的系统直流电压稳定控制策略。该策略结合机侧整流器及并网逆变器的电流预测模型,以换流器输出电流为控制变量构造代价函数,以代价函数为优化目标,为避免计算时延导致的控制延时,引入延时补偿提高控制准确度,并引入权重系数实现多目标优化,通过遍历计算产生最优开关组合信号触发换流器。在Matlab/Simulink中建立全直流风电系统的仿真模型,在不同工况下,对所提策略与传统PI控制进行对比仿真分析,仿真结果有效验证了所提控制策略的静态性能及动态性能。
文摘永磁同步电机(permanent magnet synchronous motor,PMSM)具有高效率、高功率密度与高可靠性等优势,已在工业界得到广泛应用。文中针对PMSM驱动系统,提出基于拓展控制集的有限控制集无模型预测电流控制(finite-control-set model-free predictive current control,FCS-MFPCC)。首先,分析PMSM系统的数学模型并详述有限控制集模型预测电流控制(finite-control-set model predictive current control,FCS-MPCC)的原理。其次,介绍基于线性扩张状态观测器(linear extended state observer,LESO)的传统FCS-MFPCC。针对传统FCS-MFPCC稳态性能不足的问题,采用基于离散空间矢量调制(discrete space vector modulation,DSVM)的控制集拓展方案,将控制集的电压矢量数目拓展至25。然后,为解决拓展控制集带来的高计算量问题,提出一种快速寻优策略,阐述该策略的实施原理与流程。最后,基于一台500 W PMSM实验平台,对比传统FCS-MFPCC与所提FCS-MFPCC的控制性能,验证所提算法的有效性与优越性。实验结果表明,所提算法能够有效提升系统稳态性能,且定子绕组电流总谐波畸变率由10.07%降低至6.48%。
文摘电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Model predictive direct power control,MPDPC)对传统控制策略进行改进。首先建立了三相PWM整流器的数学模型,给出了每个采样周期内的功率变化率,并推导出相邻采样周期之间的功率关系,然后给出基于单矢量的模型预测直接功率控制策略,提出了基于双矢量的模型预测直接功率控制策略,并优选出两个电流矢量,计算在一个采样周期内的作用时间,并对其进行修正。最后,在Matlab/Simulink仿真软件验证了所提控制策略的可行性和有效性。
文摘中低压直流配电系统中直流变压器(DCtransformer,DCT)常采用模型预测控制(model predictive control,MPC)来改善系统的动态响应特性,但其参数依赖性强与传输功率不均衡是限制MPC发展的关键性因素。为此提出了一种无模型预测控制(modelfreepredictivecontrol,MFPC)方法,其具备参数不敏感与传输功率自均衡的优势。首先,建立双有源桥(dual active bridge,DAB)的超局部模型,通过辨识模型中的集总扰动,来实时计算无源器件与未建模部分参数,提高了控制系统的鲁棒性。然后,将集总扰动与输入均压集成到输出电压的离散模型,在不增加额外计算量的情况下,提高了DCT在参数不匹配工况下的输出电压精度与功率均衡能力。最后,搭建了一套120V/600W的实验样机,验证了所提控制方法的有效性和优越性。
文摘针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.
文摘该文基于现场可编程门阵列(field-programmable gate array,FPGA),为永磁同步电机驱动提出一种扩张控制集模型预测电流控制策略(model predictive current control,MPCC)。由于在每个控制周期内只有8个基本电压矢量可供选择,传统有限控制集模型预测电流控制(finite control set MPCC,FCS-MPCC)稳态性能较低。为此,文中采用具有818个可选矢量的ECS来实现更精细的电压输出。为减轻因电压矢量大幅增加而带来的计算负担,设计一种简化的最优矢量搜索策略,且可推广用于其他多目标成本函数。基于算法固有并行性,将所提ECS-MPCC方法在FPGA中进行实现,使电流环总控制时间缩短至0.59μs,从而可以消除计算延迟,提高电流环动态性能。最后,通过仿真和实验,验证所提ECS-MPCC策略的有效性。实验结果表明,与传统FCS-MPCC相比,ECS-MPCC的相电流总谐波失真降低77%。
文摘针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。