期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于FSS-kernel BSS方法的机械故障诊断 被引量:2
1
作者 杨彦龙 程伟 常洪振 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第11期1557-1561,共5页
机械设备发生故障时,故障特征的提取是很重要的.为了从观测信号中分离出不同的故障特征源信号,并根据分离信号准确地进行故障诊断,从观测信号样本出发,提出了基于有限支持样本核函数的盲源分离(FSS-kernel BSS)方法.此方法利用有限的观... 机械设备发生故障时,故障特征的提取是很重要的.为了从观测信号中分离出不同的故障特征源信号,并根据分离信号准确地进行故障诊断,从观测信号样本出发,提出了基于有限支持样本核函数的盲源分离(FSS-kernel BSS)方法.此方法利用有限的观测样本估计信号的概率分布,得到了评价函数,具有很好的自适应能力.仿真试验结果表明:此方法能成功地分离超、亚高斯混合信号,与其他盲源分离方法相比,此方法具有更好的分离性能.将该方法用于转子不平衡和支座松动的复合故障信号的盲分离,分离出了各复合故障的主要频谱.分离结果表明:此方法应用于机械设备复合故障诊断中是可行的. 展开更多
关键词 故障诊断 盲源分离 有限支持样本 核函数
在线阅读 下载PDF
FSS-kernel与FastICA融合的盲源分离算法研究 被引量:1
2
作者 汪道德 何鹏举 龙莉莉 《计算机工程与应用》 CSCD 北大核心 2015年第2期209-212,270,共5页
Fast ICA算法有着比传统ICA算法更快、更稳健的收敛速度,但由于其选用的非线性函数不能很好地符合源信号的统计特性,恢复结果并不理想。针对该问题,提出了一种有限支持样本核函数(FSS-kernel)与Fast ICA融合的盲源分离算法。该方法是通... Fast ICA算法有着比传统ICA算法更快、更稳健的收敛速度,但由于其选用的非线性函数不能很好地符合源信号的统计特性,恢复结果并不理想。针对该问题,提出了一种有限支持样本核函数(FSS-kernel)与Fast ICA融合的盲源分离算法。该方法是通过FSS-kernel算法估计得出源信号概率密度函数,结合Fast ICA算法,实现混合信号的盲分离。仿真结果表明,该方法能够有效地完成混叠信号的分离,通过与传统ICA算法及Fast ICA算法比较,证明了该方法具有更高的分离精度和自适应能力。 展开更多
关键词 快速独立分量分析(Fast ICA)算法 有限支持样本核函数(FSS-kernel)算法 盲源分离 算法融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部