In this paper, a computer visualization approach is proposed for electromagnetic wave interaction with structures by mains of finite difference-time doain method (F-D) and computer graphics. By visualization of FDTD, ...In this paper, a computer visualization approach is proposed for electromagnetic wave interaction with structures by mains of finite difference-time doain method (F-D) and computer graphics. By visualization of FDTD, Phenomena such as wave propagation, penetration through structures, renection and absorption by structures are observed. Visualization of electromagnetic wave interactions with two wing-shaped structures is demonstrated. These examples indicate that the approach describe in the paper offers an effective way for investigating electromagnetic wave phenomena and is helpful to the engineers in controlling radar signature of the targets.展开更多
Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyz...Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.展开更多
文摘In this paper, a computer visualization approach is proposed for electromagnetic wave interaction with structures by mains of finite difference-time doain method (F-D) and computer graphics. By visualization of FDTD, Phenomena such as wave propagation, penetration through structures, renection and absorption by structures are observed. Visualization of electromagnetic wave interactions with two wing-shaped structures is demonstrated. These examples indicate that the approach describe in the paper offers an effective way for investigating electromagnetic wave phenomena and is helpful to the engineers in controlling radar signature of the targets.
基金the support of Grants-in-Aid for Scientific Research (B), MEXT (No.24360358)
文摘Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.