A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numeric...A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.展开更多
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems,porous bearings,porous layer insulation,biomechanics,geomechanics etc....Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems,porous bearings,porous layer insulation,biomechanics,geomechanics etc.Motivated by such applications,in this article,a numerical study of entropy generation impacts on the heat and momentum transfer in time-dependent laminar incompressible boundary layer flow of a Casson viscoplastic fluid over a uniformly heated vertical cylinder embedded in a porous medium is presented.Darcy’s law is used to simulate bulk drag effects at low Reynolds number for an isotropic,homogenous porous medium.Heat line visualization is also included.The mathematical model is derived and normalized using appropriate transformation variables.The resulting non-linear time-dependent coupled governing equations with associated boundary conditions are solved via an implicit finite difference method which is efficient and unconditionally stable.The outcomes show that entropy generation and Bejan number are both elevated with increasing values of Darcy number,Casson fluid parameter,group parameter and Grashof number.To analyze the heat transfer process in a two-dimensional domain,plotting heat lines provides an excellent approach in addition to streamlines and isotherms.It is remarked that as the Darcy number increases,the deviations of heat lines from the hot wall are reduced.展开更多
基金Project(51078127) supported by the National Natural Science Foundation of ChinaProject(JJ201109091631) supported by the Foundation for Young Scientists of Jiangxi Education Department, China
文摘A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials.The solution for the governing equations was obtained numerically by implementing the finite-difference scheme.To evaluate the accuracy of the model,a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model.The prediction results have good agreement with the experimental results.For the interface close to indoor side,the maximum deviation of temperature between calculated and test data is 1.87 K,and the average deviation is 0.95 K;the maximum deviation of relative humidity is 11.4%,and the average deviation is 5.7%.For the interface close to outdoor side,the maximum deviation of temperature between prediction and measurement is 1.78 K,and the average deviation is 1.1 K;the maximum deviation of relative humidity is 9.9%,and the average deviation is 4.2%.
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
基金DST-INSPIRE (Code No. IF160028) for the grant of research fellowship
文摘Thermal transport in porous media has stimulated substantial interest in engineering sciences due to increasing applications in filtration systems,porous bearings,porous layer insulation,biomechanics,geomechanics etc.Motivated by such applications,in this article,a numerical study of entropy generation impacts on the heat and momentum transfer in time-dependent laminar incompressible boundary layer flow of a Casson viscoplastic fluid over a uniformly heated vertical cylinder embedded in a porous medium is presented.Darcy’s law is used to simulate bulk drag effects at low Reynolds number for an isotropic,homogenous porous medium.Heat line visualization is also included.The mathematical model is derived and normalized using appropriate transformation variables.The resulting non-linear time-dependent coupled governing equations with associated boundary conditions are solved via an implicit finite difference method which is efficient and unconditionally stable.The outcomes show that entropy generation and Bejan number are both elevated with increasing values of Darcy number,Casson fluid parameter,group parameter and Grashof number.To analyze the heat transfer process in a two-dimensional domain,plotting heat lines provides an excellent approach in addition to streamlines and isotherms.It is remarked that as the Darcy number increases,the deviations of heat lines from the hot wall are reduced.