近年来,部分特高压换流变压器在运行中相继发生电弧短路故障并引发爆炸、起火事故,严重威胁直流系统安全稳定运行。充油设备故障冲击下的结构失效机制尚不明确,且缺乏成熟的数值计算方法,制约故障防爆技术的发展。基于此,该文提出一套...近年来,部分特高压换流变压器在运行中相继发生电弧短路故障并引发爆炸、起火事故,严重威胁直流系统安全稳定运行。充油设备故障冲击下的结构失效机制尚不明确,且缺乏成熟的数值计算方法,制约故障防爆技术的发展。基于此,该文提出一套适用于高能电弧故障冲击的结构失效仿真计算方法。首先,建立有限腔体内油中电弧能量持续注入的气泡动力学模型,准确描述故障气泡的脉动膨胀行为;其次,提出自适应有限元-光滑粒子流体动力学(finite element method-smoothed particle hydrodynamics,FEM-SPH)耦合方法,利用SPH粒子继承失效前的物理信息参与FEM计算;进行不同能量、不同位置的电弧故障仿真计算,获得换流变压器结构的薄弱区域及其破裂行为,复现了油箱结构失效行为。研究发现,油箱顶盖两侧及侧壁转角接缝位置容易发生应力集中现象。一旦结构出现裂缝,将在极短时间内沿着应力集中方向快速发展,最终导致壁面整体撕裂。可知,该方法揭示的结构失效行为可为改进变压器设计和提高设备安全性提供依据。展开更多
针对有限元模型难以模拟大量弹丸群集撞击的喷丸过程,使用光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)耦合有限元法(Finite Element Method,FEM)模拟喷丸强化过程.工件采用FEM建模,弹丸流采用SPH建模,通过接触算法实现SPH...针对有限元模型难以模拟大量弹丸群集撞击的喷丸过程,使用光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)耦合有限元法(Finite Element Method,FEM)模拟喷丸强化过程.工件采用FEM建模,弹丸流采用SPH建模,通过接触算法实现SPH和FEM的耦合以模拟弹丸对工件的强化作用.采用随机算法建立了包含丸粒和空气两类SPH粒子形成的弹丸流模型,推导了两者的状态方程.研究了弹丸速度、喷丸时间等对喷丸残余应力的影响及工件表面各典型位置处的残余应力分布.结果表明:最大残余压应力值及深度随喷丸速度的增加而增加;达到一定喷丸时间后,继续增加作用时间,则残余应力变化甚微,其变化幅度小于10%,达到喷丸饱和状态;处于撞击中心处的残余应力值最大.展开更多
文摘近年来,部分特高压换流变压器在运行中相继发生电弧短路故障并引发爆炸、起火事故,严重威胁直流系统安全稳定运行。充油设备故障冲击下的结构失效机制尚不明确,且缺乏成熟的数值计算方法,制约故障防爆技术的发展。基于此,该文提出一套适用于高能电弧故障冲击的结构失效仿真计算方法。首先,建立有限腔体内油中电弧能量持续注入的气泡动力学模型,准确描述故障气泡的脉动膨胀行为;其次,提出自适应有限元-光滑粒子流体动力学(finite element method-smoothed particle hydrodynamics,FEM-SPH)耦合方法,利用SPH粒子继承失效前的物理信息参与FEM计算;进行不同能量、不同位置的电弧故障仿真计算,获得换流变压器结构的薄弱区域及其破裂行为,复现了油箱结构失效行为。研究发现,油箱顶盖两侧及侧壁转角接缝位置容易发生应力集中现象。一旦结构出现裂缝,将在极短时间内沿着应力集中方向快速发展,最终导致壁面整体撕裂。可知,该方法揭示的结构失效行为可为改进变压器设计和提高设备安全性提供依据。
文摘针对有限元模型难以模拟大量弹丸群集撞击的喷丸过程,使用光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)耦合有限元法(Finite Element Method,FEM)模拟喷丸强化过程.工件采用FEM建模,弹丸流采用SPH建模,通过接触算法实现SPH和FEM的耦合以模拟弹丸对工件的强化作用.采用随机算法建立了包含丸粒和空气两类SPH粒子形成的弹丸流模型,推导了两者的状态方程.研究了弹丸速度、喷丸时间等对喷丸残余应力的影响及工件表面各典型位置处的残余应力分布.结果表明:最大残余压应力值及深度随喷丸速度的增加而增加;达到一定喷丸时间后,继续增加作用时间,则残余应力变化甚微,其变化幅度小于10%,达到喷丸饱和状态;处于撞击中心处的残余应力值最大.