期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
有条件生成对抗网络的IVUS图像内膜与中-外膜边界检测
被引量:
4
1
作者
袁绍锋
杨丰
+3 位作者
徐琳
吴洋洋
黄靖
刘娅琴
《中国生物医学工程学报》
CAS
CSCD
北大核心
2019年第2期146-156,共11页
针对血管内超声(IVUS)图像中各类斑块、超声阴影和血管分支等造成内膜(LU)与中-外膜(MA)边界难以准确检测的问题,提出一种结合堆叠沙漏网络(SHGN)和有条件生成对抗网络(C-GAN)的IVUS内膜与中-外膜检测的改进方法。首先根据血管形态特点...
针对血管内超声(IVUS)图像中各类斑块、超声阴影和血管分支等造成内膜(LU)与中-外膜(MA)边界难以准确检测的问题,提出一种结合堆叠沙漏网络(SHGN)和有条件生成对抗网络(C-GAN)的IVUS内膜与中-外膜检测的改进方法。首先根据血管形态特点,使用旋转、缩放和Gamma变换等方法将图像训练集扩充57倍,降低网络训练过拟合风险;然后利用对抗训练思想,构建基于L1、L2重建损失的联合损失函数,学习超声图像与其对应分割图像的映射关系,将IVUS图像分割为3种不同区域:血管外周组织、斑块区域和内腔区域;最后在图像分割结果上,采用阈值处理方法,检测最终的内膜与中-外膜边界。采用国际标准IVUS图像数据集(10位病人435幅)评价所提出的算法。实验量化评价结果为:内膜计算面积交并比(JM) 93%,面积差异百分比(PAD) 3%,Hausdorff距离(HD) 0.19 mm;中-外膜JM 95%,PAD 3%,HD 0.16 mm。这些指标满足临床诊断要求,性能优于现有的、近年较好的9种算法,以及Pix2Pix模型。在临床实践应用分析中,利用南部战区总医院心血管内科所收集的100幅IVUS图像进行检验,取得较好的分割结果。这表明该方法具有较好的跨数据集泛化性能。
展开更多
关键词
血管内超声
内膜与中-外膜边界检测
有条件生成对抗网络
堆叠沙漏
网络
深度学习
在线阅读
下载PDF
职称材料
题名
有条件生成对抗网络的IVUS图像内膜与中-外膜边界检测
被引量:
4
1
作者
袁绍锋
杨丰
徐琳
吴洋洋
黄靖
刘娅琴
机构
南方医科大学生物医学工程学院
南方医科大学广东省医学图像处理重点实验室
中国人民解放军南部战区总医院(原广州军区广州总医院)心血管内科
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2019年第2期146-156,共11页
基金
国家自然科学基金(61771233
61271155)
广东省科技计划项目(2013A022100036)
文摘
针对血管内超声(IVUS)图像中各类斑块、超声阴影和血管分支等造成内膜(LU)与中-外膜(MA)边界难以准确检测的问题,提出一种结合堆叠沙漏网络(SHGN)和有条件生成对抗网络(C-GAN)的IVUS内膜与中-外膜检测的改进方法。首先根据血管形态特点,使用旋转、缩放和Gamma变换等方法将图像训练集扩充57倍,降低网络训练过拟合风险;然后利用对抗训练思想,构建基于L1、L2重建损失的联合损失函数,学习超声图像与其对应分割图像的映射关系,将IVUS图像分割为3种不同区域:血管外周组织、斑块区域和内腔区域;最后在图像分割结果上,采用阈值处理方法,检测最终的内膜与中-外膜边界。采用国际标准IVUS图像数据集(10位病人435幅)评价所提出的算法。实验量化评价结果为:内膜计算面积交并比(JM) 93%,面积差异百分比(PAD) 3%,Hausdorff距离(HD) 0.19 mm;中-外膜JM 95%,PAD 3%,HD 0.16 mm。这些指标满足临床诊断要求,性能优于现有的、近年较好的9种算法,以及Pix2Pix模型。在临床实践应用分析中,利用南部战区总医院心血管内科所收集的100幅IVUS图像进行检验,取得较好的分割结果。这表明该方法具有较好的跨数据集泛化性能。
关键词
血管内超声
内膜与中-外膜边界检测
有条件生成对抗网络
堆叠沙漏
网络
深度学习
Keywords
intravascular ultrasound
lumen and media-adventitia border detection
conditional generative adversarial networks
stacked hourglass networks
deep learning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
R445.1 [医药卫生—影像医学与核医学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
有条件生成对抗网络的IVUS图像内膜与中-外膜边界检测
袁绍锋
杨丰
徐琳
吴洋洋
黄靖
刘娅琴
《中国生物医学工程学报》
CAS
CSCD
北大核心
2019
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部