期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于有效通道注意力的遥感图像场景分类 被引量:5
1
作者 屈震 李堃婷 冯志玺 《计算机应用》 CSCD 北大核心 2022年第5期1431-1439,共9页
针对基于人工设计特征的方法不能提取高层次遥感图像信息以及以往利用VGGNet、ResNet等卷积神经网络(CNN)无法关注到遥感图像中显著分类特征的问题,提出了一种基于有效通道注意力(ECA)机制的遥感图像场景分类新模型——ECA-ResNeXt-8-SV... 针对基于人工设计特征的方法不能提取高层次遥感图像信息以及以往利用VGGNet、ResNet等卷积神经网络(CNN)无法关注到遥感图像中显著分类特征的问题,提出了一种基于有效通道注意力(ECA)机制的遥感图像场景分类新模型——ECA-ResNeXt-8-SVM。为了建立高效模型,一方面,设计了嵌入ECA模块的深度特征提取网络ECA-ResNeXt-8,通过端到端的学习使网络更关注分类特征明显的通道;另一方面,利用支持向量机(SVM)代替全连接层作为已提取到的深度特征的分类器,从而进一步提高模型的分类准确率与泛化能力。该模型在实验数据集UC Merced Land-Use上的分类准确率达到95.81%,相较于使用SE-ResNeXt50与ResNeXt50网络,分别提高了6%与18%,且在分类准确率为75%时所提模型的训练时间比上述两个网络分别减少了82%与81%。实验结果表明,所提模型能够有效地减少模型的收敛时间并提升遥感图像场景分类的准确率。 展开更多
关键词 遥感图像场景分类 有效通道注意力机制 支持向量机 深度学习 卷积神经网络
在线阅读 下载PDF
轻量级注意力X射线矿石检测方法 被引量:9
2
作者 杨文龙 郭明钰 《电子测量技术》 北大核心 2022年第18期71-79,共9页
针对缺乏矿石数据集和矿石分类识别模型等因素,自建以X射线照射成像的矿石图像为数据集,并以MobileNet V2为主网络,提出基于改进MobileNet V2轻量级矿石分类模型算法。首先,通过调整扩展因子和宽度因子大幅减少模型参数量,实现模型轻量... 针对缺乏矿石数据集和矿石分类识别模型等因素,自建以X射线照射成像的矿石图像为数据集,并以MobileNet V2为主网络,提出基于改进MobileNet V2轻量级矿石分类模型算法。首先,通过调整扩展因子和宽度因子大幅减少模型参数量,实现模型轻量化的目的;其次,通过在部分倒残差模块和原模型分类器中嵌入高效通道注意力机制,并将剩余倒残差模块替换为含深度空洞卷积的并行特征提取网络,以增强模型特征信息提取能力,提升模型识别准确率;最后,使用迁移学习的训练方式初始化权重,加速模型训练。经过改进,该算法矿石识别准确率提升至96.720%,对比VGG16、GoogleNet、Xception、ShuffleNet和MobileNet V2在准确率和矿石检测速度都获得了提升。综合而言,相比本文实验中其他算法而言,改进算法针对矿石的识别性能具有更佳表现。 展开更多
关键词 深度学习 X射线矿石图像分类 MobileNet V2 有效通道注意力机制 并行特征提取网络 迁移学习
在线阅读 下载PDF
基于MSIF-ECACNN的液压系统故障诊断 被引量:1
3
作者 李仲兴 陈丽丽 《机床与液压》 北大核心 2024年第23期199-206,共8页
针对液压信号复杂且难以准确识别的特点,提出一种基于多传感器信息融合的有效通道注意力卷积神经网络模型,分别对液压系统中的液压泵和蓄能器进行故障诊断。该模型采用并行网络结构,针对流量和压力传感器在数量、采样频率上的差异,以及... 针对液压信号复杂且难以准确识别的特点,提出一种基于多传感器信息融合的有效通道注意力卷积神经网络模型,分别对液压系统中的液压泵和蓄能器进行故障诊断。该模型采用并行网络结构,针对流量和压力传感器在数量、采样频率上的差异,以及流量和压力信号故障时表现出的不同特点,将多个压力和流量传感器信号分别输入卷积核大小不同的一维多通道卷积神经网络,并利用有效通道注意力调整特征通道权重,在全连接层进行特征融合,最终经Softmax层实现分类。结果表明:有效通道注意力能有效提高故障识别准确率,该方法与目前该领域先进的研究方法相比有更好的故障诊断性能;蓄能器故障诊断精度可达99.52%,液压泵故障诊断精度可达99.88%。同时,该方法解决了因非同源传感器数量和采样频率差异而带来的故障难以准确识别的问题。 展开更多
关键词 多传感器信息融合 卷积神经网络 有效通道注意力机制 液压系统 故障诊断
在线阅读 下载PDF
基于改进的U-Net卷积神经网络的遥感影像水体信息提取方法 被引量:3
4
作者 宋子俊 董张玉 +1 位作者 张鹏飞 张远南 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第4期488-495,515,共9页
针对当前遥感影像水体信息提取存在细节水体提取能力较弱、重要特征损失较大的问题,文章提出一种基于改进的U-Net网络实现遥感影像水体信息提取的方法。该方法首先通过引入Resnet残差卷积模块深化传统U-Net网络架构提升特征挖掘能力,并... 针对当前遥感影像水体信息提取存在细节水体提取能力较弱、重要特征损失较大的问题,文章提出一种基于改进的U-Net网络实现遥感影像水体信息提取的方法。该方法首先通过引入Resnet残差卷积模块深化传统U-Net网络架构提升特征挖掘能力,并引入Respath残差连接模块减少跳跃连接过程中的语义差距,同时引入PSConv多尺度卷积模块、Eca有效通道注意力机制模块,提高网络特征学习能力,构建PS-Eca-Multiresunet网络模型,弥补传统U-Net网络存在的细节特征提取能力较弱问题。选择“2020年第四届中科星图杯高分遥感图像解译软件大赛”数据集进行实验,结果表明,与传统U-Net网络模型相比,该方法水体提取的平均交并比提高了9.08,像素精度提升了7.4%。改进的网络提取结果能够有效避免阴影影响,提高对细节水体的提取精度,实现遥感影像水体信息的高精度提取。 展开更多
关键词 水体提取 深度学习 多尺度卷积 有效通道注意力机制 Multiresunet网络
在线阅读 下载PDF
改进YOLOv2算法的道路摩托车头盔检测 被引量:6
5
作者 冉险生 陈卓 张禾 《电子测量技术》 北大核心 2021年第24期105-115,共11页
针对摩托车头盔的传统检测方法准确率低、泛化能力差和目标检测网络参数量大难以在嵌入式设备运行的问题,提出改进的YOLOv2的MNXt-ECA-D-YOLOv2目标检测算法模型。首先引入Mobile Ne Xt网络替换YOLOv2原始骨干网络,其次在Mobile Ne Xt... 针对摩托车头盔的传统检测方法准确率低、泛化能力差和目标检测网络参数量大难以在嵌入式设备运行的问题,提出改进的YOLOv2的MNXt-ECA-D-YOLOv2目标检测算法模型。首先引入Mobile Ne Xt网络替换YOLOv2原始骨干网络,其次在Mobile Ne Xt的沙漏块中引入密集连接结构同时在网络中引入有效通道注意力机制,然后在不同深度网络层应用不同的激活函数,最后在网络输出卷积层之前增加Drop Block模块。采用K-means聚类算法重新设计了自制数据集的先验框尺寸。实验结果表明,改进后的模型相比原始YOLOv2,在AP50指标上提高了3.53%,模型大小减少77.44%,检测速度提高了近4倍。通过对比实验可知,改进后的YOLOv2模型在保持较高的精度下模型更小,在CPU中的推理速度更快,具有一定的应用价值。 展开更多
关键词 摩托车头盔检测 YOLOv2 MobileNetXt 有效通道注意力机制 激活函数 DropBlock
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部