为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点...为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.展开更多
提出一种基于密度的簇结构挖掘算法(mining density-based clustering structure over data streams,简称MClu Stream),以解决数据流密度聚类中输入参数选择困难和重叠簇识别等问题.首先,设计了一种树拓扑CR-Tree索引结构,将直接核心可...提出一种基于密度的簇结构挖掘算法(mining density-based clustering structure over data streams,简称MClu Stream),以解决数据流密度聚类中输入参数选择困难和重叠簇识别等问题.首先,设计了一种树拓扑CR-Tree索引结构,将直接核心可达的一对数据点映射成树结构中的父子关系,蕴含了数据点依赖关系的CR-Tree涵盖了一系列sub Eps参数下的基于密度的簇结构;其次,MClu Stream算法采用滑动窗口的方式更新CR-Tree,在线维护当前窗口上的簇结构,实现了对海量数据流的快速演化聚类分析;再次,设计了一种快速从CR-Tree提取簇结构的方法,根据可视化的簇结构,选择合理的聚类结果;最后,在真实和合成海量数据上的实验验证了MClu Stream算法具有有效的挖掘效果、较高的聚类效率和较小的空间开销.MClu Stream可适用于海量数据流应用中自适应的密度聚类演化分析.展开更多
流形数据由一些弧线状或环状的类簇组成,其特点是同一类簇的样本间距离差距较大。密度峰值聚类算法不能有效识别流形类簇的类簇中心且分配剩余样本时易引发样本的连续误分配问题。为此,本文提出面向流形数据的共享近邻密度峰值聚类(dens...流形数据由一些弧线状或环状的类簇组成,其特点是同一类簇的样本间距离差距较大。密度峰值聚类算法不能有效识别流形类簇的类簇中心且分配剩余样本时易引发样本的连续误分配问题。为此,本文提出面向流形数据的共享近邻密度峰值聚类(density peaks clustering based on shared nearest neighbor for manifold datasets,DPC-SNN)算法。提出了一种基于共享近邻的样本相似度定义方式,使得同一流形类簇样本间的相似度尽可能高;基于上述相似度定义局部密度,不忽略距类簇中心较远样本的密度贡献,能更好地区分出流形类簇的类簇中心与其他样本;根据样本的相似度分配剩余样本,避免了样本的连续误分配。DPC-SNN算法与DPC、FKNNDPC、FNDPC、DPCSA及IDPC-FA算法的对比实验结果表明,DPC-SNN算法能够有效发现流形数据的类簇中心并准确完成聚类,对真实以及人脸数据集也有不错的聚类效果。展开更多
对17种不同带宽系数的限带白噪声随机过程进行了雨流循环计数统计,提出了一个限带白噪声随机过程的雨流幅值概率密度函数(Probability density function,PDF)模型。该模型是Rayleigh分布和Weibull分布的线性组合,其中待定系数均为随机...对17种不同带宽系数的限带白噪声随机过程进行了雨流循环计数统计,提出了一个限带白噪声随机过程的雨流幅值概率密度函数(Probability density function,PDF)模型。该模型是Rayleigh分布和Weibull分布的线性组合,其中待定系数均为随机过程谱参数的函数。采用该模型对这17种随机过程的雨流幅值概率密度函数进行了公式拟合,探究了模型中待定参数与随机过程谱参数之间的关系,确定了模型表达式。对照随机过程的雨流计数统计结果,将该模型与Dirlik模型的预测精度进行了比较,结果表明该模型的预测效果优于Dirlik模型。展开更多
针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,...针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,定义混合型数据对象之间的距离后利用CFSFDP算法确定出簇中心,这样也就自动确定了簇的个数,然后其余的点按照密度从大到小的顺序进行分配。其次,研究了该算法中阈值(截断距离)及权值的选取问题:对于密度公式中的阈值,通过计算数据场中的势熵来自动提取;对于距离公式中的权值,利用度量数值型数据集和分类型数据集聚类趋势的统计量来定义。最后通过在三个实际混合型数据集上的测试发现:与传统k-prototypes算法相比,寻找密度峰值的聚类算法能有效提高聚类的精度。展开更多
文摘为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.
文摘流形数据由一些弧线状或环状的类簇组成,其特点是同一类簇的样本间距离差距较大。密度峰值聚类算法不能有效识别流形类簇的类簇中心且分配剩余样本时易引发样本的连续误分配问题。为此,本文提出面向流形数据的共享近邻密度峰值聚类(density peaks clustering based on shared nearest neighbor for manifold datasets,DPC-SNN)算法。提出了一种基于共享近邻的样本相似度定义方式,使得同一流形类簇样本间的相似度尽可能高;基于上述相似度定义局部密度,不忽略距类簇中心较远样本的密度贡献,能更好地区分出流形类簇的类簇中心与其他样本;根据样本的相似度分配剩余样本,避免了样本的连续误分配。DPC-SNN算法与DPC、FKNNDPC、FNDPC、DPCSA及IDPC-FA算法的对比实验结果表明,DPC-SNN算法能够有效发现流形数据的类簇中心并准确完成聚类,对真实以及人脸数据集也有不错的聚类效果。
文摘对17种不同带宽系数的限带白噪声随机过程进行了雨流循环计数统计,提出了一个限带白噪声随机过程的雨流幅值概率密度函数(Probability density function,PDF)模型。该模型是Rayleigh分布和Weibull分布的线性组合,其中待定系数均为随机过程谱参数的函数。采用该模型对这17种随机过程的雨流幅值概率密度函数进行了公式拟合,探究了模型中待定参数与随机过程谱参数之间的关系,确定了模型表达式。对照随机过程的雨流计数统计结果,将该模型与Dirlik模型的预测精度进行了比较,结果表明该模型的预测效果优于Dirlik模型。
文摘针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,定义混合型数据对象之间的距离后利用CFSFDP算法确定出簇中心,这样也就自动确定了簇的个数,然后其余的点按照密度从大到小的顺序进行分配。其次,研究了该算法中阈值(截断距离)及权值的选取问题:对于密度公式中的阈值,通过计算数据场中的势熵来自动提取;对于距离公式中的权值,利用度量数值型数据集和分类型数据集聚类趋势的统计量来定义。最后通过在三个实际混合型数据集上的测试发现:与传统k-prototypes算法相比,寻找密度峰值的聚类算法能有效提高聚类的精度。