期刊文献+
共找到3,651篇文章
< 1 2 183 >
每页显示 20 50 100
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
1
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘法支持向量 金豺算法
在线阅读 下载PDF
基于麻雀算法优化支持向量机的阀门内漏诊断研究 被引量:1
2
作者 龚家乐 曹丽华 +1 位作者 李大才 司和勇 《汽轮机技术》 北大核心 2025年第2期110-112,126,共4页
由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断... 由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断性能上与标准SVM模型进行对比分析。结果表明:在诊断过程中,SSA-SVM阀门内漏诊断模型能够适时调整模型参数,并保持较高的诊断性能,多个泄漏诊断指标均优于标准模型。当泄漏诊断准确率优先级高于诊断时间时,SSA-SVM诊断模型拥有更好的阀门泄漏诊断能力。 展开更多
关键词 阀门泄漏 支持向量 麻雀优化算法 故障诊断
在线阅读 下载PDF
改进的混沌人工蜂群算法-支持向量机漏钢预报模型
3
作者 张凯俊 张本国 +1 位作者 马棒棒 张瑞忠 《材料与冶金学报》 北大核心 2025年第3期237-242,共6页
支持向量机(SVM)是连铸漏钢预报的常用方法,针对支持向量机算法参数选取难度较大的问题,提出了一种改进的混沌人工蜂群算法-支持向量机(ICABC-SVM)漏钢预报模型.首先,利用伯努利(Bernoulli)混沌映射初始化蜂群种群,增加种群多样性;其次... 支持向量机(SVM)是连铸漏钢预报的常用方法,针对支持向量机算法参数选取难度较大的问题,提出了一种改进的混沌人工蜂群算法-支持向量机(ICABC-SVM)漏钢预报模型.首先,利用伯努利(Bernoulli)混沌映射初始化蜂群种群,增加种群多样性;其次,引入莱维(Levi)飞行策略,改进蜂群的搜索方式,扩大蜂群的搜索空间;最后,将支持向量机参数作为食物源进行寻优,并结合钢厂的历史生产数据,对ICABC-SVM模型进行训练和测试.结果表明:ICABC算法精度更高,具有良好的自适应能力;ICABC-SVM模型预报准确率为98.57%,报出率为100.00%,兼具实用性与可行性. 展开更多
关键词 漏钢预报 混沌映射 人工蜂群算法 莱维飞行 支持向量
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
4
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
有向无环图的多类支持向量机分类算法 被引量:13
5
作者 王艳 陈欢欢 沈毅 《电机与控制学报》 EI CSCD 北大核心 2011年第4期85-89,共5页
为研究基于有向无环图的支持向量机分类算法以及在故障诊断问题中的应用,考虑到有向无环图的结构运算相当于一个表操作,且分类结果依赖于有向无环图中节点的排列顺序,提出一种分类算法,该算法引入基于类分布的类间分离性测度,估计各类... 为研究基于有向无环图的支持向量机分类算法以及在故障诊断问题中的应用,考虑到有向无环图的结构运算相当于一个表操作,且分类结果依赖于有向无环图中节点的排列顺序,提出一种分类算法,该算法引入基于类分布的类间分离性测度,估计各类训练数据间的分布性质,建立初始操作表单,将样本所有可能的类别按照一定顺序排列在表单中,从而重新组合有向无环图中的节点顺序,构造基于分离性测度的有向无环图的拓扑结构。通过对3个典型数据集的数值仿真研究,结果表明所提算法的性能优于传统算法。 展开更多
关键词 支持向量 有向无环 分离性测度 故障诊断
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
6
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
7
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于优化的支持向量机模型评估和预测社会-生态系统脆弱性——以陕南秦巴山区为例 被引量:1
8
作者 李润阳 陈佳 +3 位作者 杨新军 尹莎 徐俐 白玉玲 《生态学报》 北大核心 2025年第5期2281-2297,共17页
随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模... 随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模型,将SESV分解为暴露风险、敏感性和适应能力三个维度共48个指标,定量评估了2000—2020年陕南秦巴山区SESV及其各维度的空间分布特征,随后构建支持向量机模型,通过对比三种算法优化后的模型精度选取最优模型并预测2020—2050年陕南秦巴山区SESV及其各维度的时空分布和演化特征。结果显示:①陕南秦巴山区的SESV整体处于中低脆弱水平,在空间上呈现“中部高,南北低”的分布格局。②粒子群算法优化的支持向量机模型的准确性最优,且选取合适的训练样本数量能进一步改善预测性能。③预测结果显示,陕南秦巴山区SESV得到了显著降低,社会⁃生态系朝着良好态势发展。其中,暴露风险与SESV具有趋同性且地区间的差异变小,敏感性与适应能力维度均呈现“西高东低”的态势但地区间的差异并未缓解。研究旨在通过中国山区典型案例分析为SESV评估与预测提供参考依据。 展开更多
关键词 社会⁃生态系统 脆弱性 支持向量模型 优化算法 陕南秦巴山区
在线阅读 下载PDF
ZigBee技术和支持向量机下室内火灾自动报警系统 被引量:1
9
作者 邹峰 《现代电子技术》 北大核心 2025年第2期148-152,共5页
室内火灾报警系统只能基于少量传感器的数据进行判断,容易受到烟雾、温度等干扰,导致误判率较高。为此,基于ZigBee技术和支持向量机设计一种室内火灾自动报警系统。采用传感器节点采集室内烟雾浓度与温度信息,通过ZigBee路由设备将采集... 室内火灾报警系统只能基于少量传感器的数据进行判断,容易受到烟雾、温度等干扰,导致误判率较高。为此,基于ZigBee技术和支持向量机设计一种室内火灾自动报警系统。采用传感器节点采集室内烟雾浓度与温度信息,通过ZigBee路由设备将采集的信息转发至ZigBee协调器内。利用基于负载均衡的ZigBee网络多径路由算法建立信息传输路径,将ZigBee路由设备转发的信息传输至支持向量机处理模块内。使用支持向量机算法处理烟雾浓度与温度信息,获取高校室内火灾类型的发生概率,并与事先设置的判别阈值进行比较,当火灾发生概率大于阈值,自动报警模块会自动发出警报。实验结果表明:所设计系统火灾信息采集精度较高,无线网络生存周期长,具备较优的信息传输效果,且能够有效计算高校室内火灾类型发生概率并自动发出警报。 展开更多
关键词 ZIGBEE技术 支持向量 室内火灾 自动报警 协调器 信息传输 多径路由算法
在线阅读 下载PDF
近红外无创血糖浓度的Label Sensitivity算法和支持向量机回归 被引量:3
10
作者 孟琪 赵鹏 +4 位作者 宦克为 李野 姜志侠 张瀚文 周林华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期617-624,共8页
近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在... 近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在预测精度低、预测值与标签值相关性不高等难点,至今没有达到临床要求。近年来,光谱检测技术发展迅猛且机器学习技术在智能信息处理方面具有明显优势,两者结合可以有效提高人体无创血糖医学监测模型的精度和普适性。提出了一种标签敏感度算法(LS),并结合支持向量机方法建立了人体血糖含量预测模型。使用近红外光谱仪采集了4名志愿者食指处动态血液光谱数据(每名志愿者28组数据),并使用多元散射矫正(MSC)方法消除了部分光散射的影响。考虑血糖对不同波长光的吸收有差异,提出了基于血糖浓度标签差的特征波长挑选方法,并构建了标签敏感度支持向量机(LSSVR)预测模型。设计实验,对比该模型与偏最小二乘回归(PLSR)和区分度支持向量机(FSSVR)算法。结果表明,LS算法的最佳特征波长数为32,经特征波长选择后的LSSVR表现最佳,其均方误差降低至0.02 mmol·L^(-1),明显优于全谱段PLSR模型,血糖浓度的预测值与标签值的相关系数提升至99.8%,预测值全部位于可容许误差的克拉克网格A区内。LSSVR模型的优异表现为早日实现血糖的无创监测提供了新思路。 展开更多
关键词 无创血糖 近红外光谱 特征波长 Label Sensitivity算法 支持向量
在线阅读 下载PDF
结合SMOTE技术与优化算法的支持向量机在慢性心衰不良结局预测中的应用 被引量:1
11
作者 李晓桐 程璠 +3 位作者 田晶 闫晶晶 张岩波 韩清华 《中国卫生统计》 CSCD 北大核心 2024年第6期802-806,共5页
目的应用优化算法的支持向量机(support vector machine,SVM)结合合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)预测慢性心衰患者不良结局,提高分类模型预测性能。方法顺序入选2014年1月至2017年12月,山西... 目的应用优化算法的支持向量机(support vector machine,SVM)结合合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)预测慢性心衰患者不良结局,提高分类模型预测性能。方法顺序入选2014年1月至2017年12月,山西省两所三级甲等医院心内科确诊为慢性心力衰竭的1183例住院患者,收集患者的病历资料。基于原始训练集构建logistic回归(logistic regression,LR)与支持向量机模型,同时结合SMOTE算法构建LR、SVM、遗传算法支持向量机(genetic algorithm support vector machine,GA-SVM)和粒子群支持向量机模型(particle swarm support vector machine,PSO-SVM),通过灵敏度(sensitivity,SEN)、准确度(accuracy,ACC)、特异度(specificity,SPE)、G-means、F-measure、ROC曲线下面积(area under receiver operating characteristic curve,AUC)等指标综合评价各模型的分类性能。结果相较于对原始数据进行直接分类,应用SMOTE技术均衡化数据集后,模型性能明显提高。均衡化训练集构建LR、SVM、GA-SVM和PSO-SVM模型结果表明,GA-SVM和PSO-SVM在SPE、ACC指标低于LR;SEN、G-means、F-measure和AUC均优于LR。GA-SVM和PSO-SVM的综合效果显著高于SVM(SEN、G-means、F-measure指标表现均优于SVM)。结论基于均衡化数据集构建GA-SVM或PSO-SVM模型可提高SVM对于心衰预后的预测性能。 展开更多
关键词 SMOTE 支持向量 遗传算法优化 粒子群算法优化 慢性心力衰竭
在线阅读 下载PDF
支持向量机结合FTIR的沥青混合料老化程度鉴别
12
作者 朱怡烁 张维 胡锦江 《传感器与微系统》 北大核心 2025年第4期74-77,82,共5页
为实现沥青混合料老化程度的分类识别,本文基于傅里叶变换红外(FTIR)光谱技术,采用无信息变量消除(UVE)方法结合浣熊优化算法(COA)优化支持向量机(SVM),建立了分类识别模型。首先,采集3种不同老化程度的沥青混合料红外光谱数据,并运用S-... 为实现沥青混合料老化程度的分类识别,本文基于傅里叶变换红外(FTIR)光谱技术,采用无信息变量消除(UVE)方法结合浣熊优化算法(COA)优化支持向量机(SVM),建立了分类识别模型。首先,采集3种不同老化程度的沥青混合料红外光谱数据,并运用S-G平滑+标准正态变量(SNV)变换对原始光谱进行预处理;再用UVE算法减少光谱冗余信息,从7157个变量中获得了1197个变量;最后引入COA对SVM惩罚因子C和核函数半径σ优化,建立识别模型,并与粒子群优化(PSO)算法、鲸鱼优化算法(WOA)对SVM优化效果进行对比。结果表明:经UVE进行光谱变量筛选明显提高了模型精度,UVE-COA-SVM训练集和测试集正确率均为100%,优于UVE-PSO-SVM和UVE-WOA-SVM,该方法可用于沥青混合料老化程度识别模型的建立。 展开更多
关键词 沥青混合料 傅里叶变换红外光谱 浣熊优化算法 支持向量 老化识别
在线阅读 下载PDF
基于参数优化多核支持向量机的光伏功率预测算法 被引量:3
13
作者 贺亦琛 师长立 +2 位作者 郭小强 贺伟 韩涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期394-404,共11页
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处... 准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 展开更多
关键词 光伏 预测 主成分分析 多核支持向量 灰狼优化算法
在线阅读 下载PDF
基于支持向量机与蛇优化算法的氧化锆陶瓷磨削工艺参数优化 被引量:1
14
作者 陶其赫 马廉洁 +2 位作者 孙杨 王乐 李文博 《工具技术》 北大核心 2024年第5期84-88,共5页
为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多... 为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多元模型,并对模型进行验证。以温度、法向磨削力的多元数值模型作为目标函数,对温度和法向磨削力进行优化;基于蛇优化算法对工艺参数进行双目标优化,获得磨削工艺参数的最优解,验证实验结果表明,模型具有较高的精度,得到的最优工艺参数合理。 展开更多
关键词 支持向量 蛇优化算法 参数优化 氧化锆陶瓷
在线阅读 下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:4
15
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
在线阅读 下载PDF
基于单类支持向量机的组合导航容错算法 被引量:2
16
作者 孙传波 王虹 +1 位作者 杨然 余国才 《电光与控制》 CSCD 北大核心 2024年第5期30-33,107,共5页
提出了一种基于单类支持向量机(OCSVM)的组合导航容错算法。针对组合导航系统中子系统出现故障会影响整个导航系统精度的问题,采用基于单类支持向量机的方法,对故障进行检测和隔离,并对容错性能进行分析。仿真结果表明:在应用基于单类... 提出了一种基于单类支持向量机(OCSVM)的组合导航容错算法。针对组合导航系统中子系统出现故障会影响整个导航系统精度的问题,采用基于单类支持向量机的方法,对故障进行检测和隔离,并对容错性能进行分析。仿真结果表明:在应用基于单类支持向量机的容错算法后,系统的故障检测模块可以有效地隔离故障数据,降低了多源组合导航系统的位置误差,其可靠性和稳定性也得到了提高。 展开更多
关键词 组合导航 容错算法 单类支持向量
在线阅读 下载PDF
增强支持向量机和遗传算法的WSN安全研究 被引量:3
17
作者 赵文灏 陈曦 《计算机应用与软件》 北大核心 2024年第2期300-304,327,共6页
针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能... 针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能轻量级物联网入侵检测算法。该算法进行预处理以将入侵数据集的复杂流量转换为SVM的可读格式,采用交叉和变异算子智能选择信息量最大的流量特征以降低无线网络流量的维数,使用ESVM算法执行分类以更有效地识别入侵攻击检测。实现结果表明,该算法在选择最优流量和提高检测精度方面均有明显改善。 展开更多
关键词 增强型支持向量 遗传算法 物联网 轻量级入侵检测系统
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
18
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量 遗传算法
在线阅读 下载PDF
基于结点优化的决策导向无环图支持向量机及其在故障诊断中的应用 被引量:22
19
作者 易辉 宋晓峰 +1 位作者 姜斌 王定成 《自动化学报》 EI CSCD 北大核心 2010年第3期427-432,共6页
支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法... 支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法的决策结果与结点的排部密切相关,而其结点的排部却是主观的,影响了诊断的正确率.本文提出一种根据故障数据的空间分布来优化结点排部的方法,它能够提高支持向量机诊断的正确率.采用该方法扩展的多分类支持向量机在变压器故障诊断中获得良好效果. 展开更多
关键词 支持向量 故障诊断 多分类 决策导向无环 结点优化
在线阅读 下载PDF
基于支持向量机和果蝇优化算法的循环流化床锅炉NO_x排放特性研究 被引量:35
20
作者 牛培峰 麻红波 +3 位作者 李国强 马云飞 陈贵林 张先臣 《动力工程学报》 CAS CSCD 北大核心 2013年第4期267-271,共5页
为了控制循环流化床(CFB)锅炉的NOx排放量,以某热电厂300MW CFB锅炉测试数据为样本,应用支持向量机(SVM)建立NOx排放特性预测模型.针对SVM回归预测需要人为确定相关参数的不足,应用果蝇优化算法(FOA)优化SVM参数,采用不同工况下的样本... 为了控制循环流化床(CFB)锅炉的NOx排放量,以某热电厂300MW CFB锅炉测试数据为样本,应用支持向量机(SVM)建立NOx排放特性预测模型.针对SVM回归预测需要人为确定相关参数的不足,应用果蝇优化算法(FOA)优化SVM参数,采用不同工况下的样本数据检验FOA-SVM模型的预测性能,并将该模型的预测结果与粒子群算法(PSO)、遗传算法(GA)和万有引力搜索算法(GSA)优化的SVM模型预测结果进行了比较.结果表明:FOA-SVM模型的泛化能力较强,预测精度较高,训练时间较短,可以相对快速、准确地预测NOx排放质量浓度. 展开更多
关键词 流化床锅炉 NOX排放特性 支持向量 果蝇优化算法 模型
在线阅读 下载PDF
上一页 1 2 183 下一页 到第
使用帮助 返回顶部