-
题名基于贝叶斯法估计杉木人工林树高生长模型
被引量:45
- 1
-
-
作者
张雄清
张建国
段爱国
-
机构
中国林业科学研究院林业研究所国家林业局林木培育重点实验室
-
出处
《林业科学》
EI
CAS
CSCD
北大核心
2014年第3期69-75,共7页
-
基金
中央级公益性科研院所中国林业科学研究院林业研究所所长基金(RIF2013-09)
国家自然科学基金项目(31300537,31100476)
江苏高校协同创新计划资助项目
-
文摘
以江西杉木密度试验林为例,分别基于贝叶斯法和传统法(非线性最小二乘法)估计杉木人工林树高生长模型,并在贝叶斯法中考虑无信息先验分布和有信息先验分布。结果表明:利用贝叶斯法估计杉木人工林树高生长模型,预测值的可靠性比传统法好,而且基于有信息先验分布估计杉木人工林树高生长模型要略好于无信息先验分布。这是因为利用生长模型预测杉木人工林树高生长存在着一定的不确定性,使得利用传统的估计方法分析杉木人工林生长模型稳定性比较低,可靠性也相对较差。贝叶斯法综合利用了先验信息和样本信息,而传统法仅利用了样本信息,而且贝叶斯法把模型参数看作是随机变量,更能反映杉木人工林树高生长的本质,预测杉木人工林树高的可靠性更好,而传统法把模型参数看作固定值。研究结果为杉木人工林生长模型的估计提供一种新的思路。
-
关键词
贝叶斯法
有信息先验分布
无信息先验分布
树高生长
杉木人工林
-
Keywords
Bayesian method
informative prior
non-informative prior
tree-height growth
Chinese fir plantation
-
分类号
S757
[农业科学—森林经理学]
-