期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GRO优化的VMD-HKELM月蒸发量预测方法研究 被引量:2
1
作者 李菊 崔东文 《水文》 CSCD 北大核心 2024年第5期25-31,共7页
水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提... 水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提出两种方案。方案Ⅰ先对月蒸发量时间序列分解,后划分训练集、测试集;方案Ⅱ先对月蒸发量划分训练集、测试集,再进行时间序列分解。通过一种新型元启发式算法对分解技术VMD、预测器HKELM超参数进行目标寻优并建立多种模型,采用云南省龙潭寨、西洋街水文站月蒸发量预测实例对方案Ⅰ、方案Ⅱ各模型进行检验。结果表明:方案Ⅰ各模型性能优于方案Ⅱ,各模型的拟合精度和预测精度总体上随分解分量数的增加而提高,但方案Ⅰ使用了测试集信息,导致预测精度虚高;方案Ⅱ各模型具有较好的预测精度和稳健性能,其用于月蒸发量时间序列预测是可行的,反映出客观真实的预测效果,具有较好的实用价值和意义。 展开更多
关键词 变分模态分解 淘金热优化算法 混合核极限学习机 超参数优化 月蒸发量预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部