针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺...针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺序图,并构建了在缩短加工周期、提高加工质量和降低加工成本目标下的最低加工资源更换成本的目标函数;其次,设计加工元序列与加工资源两个搜索阶段的蚁群搜索,拓扑优先顺序图可弥补加工元序列搜索阶段信息素匮乏的缺点,而在加工资源搜索阶段引入细菌觅食优化算法的复制与趋向操作,可使加工元在多个可选加工资源的情况下获得加工资源更换成本最低的加工序列;最后,基于细菌觅食与蚁群算法的融合优化,完成多个加工元序列的信息素积累并输出最优解,解决蚁群算法局部收敛且计算速度慢的问题。将BFACO算法应用于实例并与其他优化算法的优化结果进行对比,结果显示BFACO算法在工艺路线优化方面较其他优化算法具有较高的计算效率,验证了BFACO算法的可行性与有效性。研究表明,BFACO算法可有效应用于同时考虑工艺约束与加工资源更换成本的工艺规划,为实际生产提供高效且灵活的工艺路线的优化选择。展开更多
【目的】以路径重复率为优化目标解决农业机器人在数字生态农场中的全区域覆盖问题。【方法】首先,将栅格地图中的障碍物进行膨胀处理,在此基础上进行矩形分区以及分区合并操作;然后,通过改进的蚁群算法规划分区间的遍历顺序、通过改进...【目的】以路径重复率为优化目标解决农业机器人在数字生态农场中的全区域覆盖问题。【方法】首先,将栅格地图中的障碍物进行膨胀处理,在此基础上进行矩形分区以及分区合并操作;然后,通过改进的蚁群算法规划分区间的遍历顺序、通过改进的广度优先搜索(Breadth first search, BFS)算法规划分区间终点与起点的衔接路径,从而实现机器人全区域覆盖。2种算法的具体改进方案为:分别通过人工免疫算法与粒子群算法改进遗传算法的选择与交叉算子,并将改进后的选择算子、交叉算子、原遗传算法变异算子与蚁群算法相结合改进传统蚁群算法信息素更新方法;建立动态函数以简化BFS算法规划的路径。【结果】仿真结果表明,改进蚁群算法收敛时的迭代次数较传统蚁群算法减少了83.1%,路径长度相比减少了4.8%;由改进的蚁群算法与改进的BFS算法规划的机器人遍历路径重复率是传统蚁群算法和BFS算法的56%,且农业机器人能实现对农田区域的100%覆盖。【结论】本研究提供了一种农业机器人在复杂环境的数字生态循环农场中进行全遍历覆盖的解决方案。展开更多
文摘针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺序图,并构建了在缩短加工周期、提高加工质量和降低加工成本目标下的最低加工资源更换成本的目标函数;其次,设计加工元序列与加工资源两个搜索阶段的蚁群搜索,拓扑优先顺序图可弥补加工元序列搜索阶段信息素匮乏的缺点,而在加工资源搜索阶段引入细菌觅食优化算法的复制与趋向操作,可使加工元在多个可选加工资源的情况下获得加工资源更换成本最低的加工序列;最后,基于细菌觅食与蚁群算法的融合优化,完成多个加工元序列的信息素积累并输出最优解,解决蚁群算法局部收敛且计算速度慢的问题。将BFACO算法应用于实例并与其他优化算法的优化结果进行对比,结果显示BFACO算法在工艺路线优化方面较其他优化算法具有较高的计算效率,验证了BFACO算法的可行性与有效性。研究表明,BFACO算法可有效应用于同时考虑工艺约束与加工资源更换成本的工艺规划,为实际生产提供高效且灵活的工艺路线的优化选择。
文摘【目的】以路径重复率为优化目标解决农业机器人在数字生态农场中的全区域覆盖问题。【方法】首先,将栅格地图中的障碍物进行膨胀处理,在此基础上进行矩形分区以及分区合并操作;然后,通过改进的蚁群算法规划分区间的遍历顺序、通过改进的广度优先搜索(Breadth first search, BFS)算法规划分区间终点与起点的衔接路径,从而实现机器人全区域覆盖。2种算法的具体改进方案为:分别通过人工免疫算法与粒子群算法改进遗传算法的选择与交叉算子,并将改进后的选择算子、交叉算子、原遗传算法变异算子与蚁群算法相结合改进传统蚁群算法信息素更新方法;建立动态函数以简化BFS算法规划的路径。【结果】仿真结果表明,改进蚁群算法收敛时的迭代次数较传统蚁群算法减少了83.1%,路径长度相比减少了4.8%;由改进的蚁群算法与改进的BFS算法规划的机器人遍历路径重复率是传统蚁群算法和BFS算法的56%,且农业机器人能实现对农田区域的100%覆盖。【结论】本研究提供了一种农业机器人在复杂环境的数字生态循环农场中进行全遍历覆盖的解决方案。