期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
局部化的广义特征值最接近支持向量机 被引量:10
1
作者 杨绪兵 陈松灿 杨益民 《计算机学报》 EI CSCD 北大核心 2007年第8期1227-1234,共8页
基于广义特征值的最接近支持向量机(Proximal Support Vector Machine via Generalized Eigenvalues,GEPSVM)是一种新的具有与SVM性能相当的两分类方法,通过求解广义特征值来获得两个彼此不平行的拟合两类样本的超平面.其决策是将测试... 基于广义特征值的最接近支持向量机(Proximal Support Vector Machine via Generalized Eigenvalues,GEPSVM)是一种新的具有与SVM性能相当的两分类方法,通过求解广义特征值来获得两个彼此不平行的拟合两类样本的超平面.其决策是将测试样本归为距其最近的超平面所在的类.然而,该规则在某些情形会导致较差的分类结果.对此,在GEPSVM基础上,通过在类拟合超平面上寻找一个包含了所有训练样本投影的局部凸区域,来决定样本的类别.该局部方法不仅具有较GEPSVM更优的分类性能,同时还衍生出了求解超平面上凸壳的简单且易于核化的新算法.最后在人工和UCI数据集上获得了验证. 展开更多
关键词 最接近支持向量机 广义特征值问题 凸壳 局部化 分类
在线阅读 下载PDF
基于原型超平面的多类最接近支持向量机 被引量:17
2
作者 杨绪兵 陈松灿 《计算机研究与发展》 EI CSCD 北大核心 2006年第10期1700-1705,共6页
基于广义特征值的最接近支持向量机(proximalsupportvectormachineviageneralizedeigenvalues,GEPSVM)摒弃了传统意义下支持向量机典型平面的平行约束,代之以通过优化使每类原型平面尽可能接近本类样本,同时尽可能远离它类样本的准则来... 基于广义特征值的最接近支持向量机(proximalsupportvectormachineviageneralizedeigenvalues,GEPSVM)摒弃了传统意义下支持向量机典型平面的平行约束,代之以通过优化使每类原型平面尽可能接近本类样本,同时尽可能远离它类样本的准则来解析获得原型平面;从而避免了SVM的二次规划,其分类性能达到甚至超过了SVM.但GEPSVM仍存在如下不足①仅对两分类问题而提出,无法直接求解多分类问题;②存在正则化因子的选择问题;③求解原型平面的广义特征值问题中所涉及的矩阵一般仅为半正定,容易导致奇异性问题.通过定义新的准则,构建了一个能直接求解多个原型超平面的多分类方法,称之为基于原型超平面的多类最接近支持向量机,较之GEPSVM,该方法优势在于①无正则化因子选择的困扰;②可同时求解多个超平面,对两分类问题,分类性能达到甚至优于GEPSVM;③超平面的选择问题转化为简单特征值而非广义特征值求解问题;④原型平面的选择只依赖于本类样本,故不必考虑多分类情形时的数据不平衡问题. 展开更多
关键词 最接近支持向量机 原型超平面 广义特征值
在线阅读 下载PDF
优化样本分布的最接近支持向量机 被引量:2
3
作者 杨勃 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2429-2434,共6页
当两类样本分布存在差异时,最接近支持向量机(Proximal Support Vector Machine,PSVM)等最小二乘类分类器分类结果将出现偏差,不能实现最小错误率分类.本文在分析PSVM等价广义特征值分解模型基础上,提出了一种改善原PSVM分类决策面的优... 当两类样本分布存在差异时,最接近支持向量机(Proximal Support Vector Machine,PSVM)等最小二乘类分类器分类结果将出现偏差,不能实现最小错误率分类.本文在分析PSVM等价广义特征值分解模型基础上,提出了一种改善原PSVM分类决策面的优化样本分布PSVM,其基本思想是通过引入最大化正确分类样本距决策面距离,同时最小化错误分类样本距决策面距离的优化样本分布正则化项,构造优化样本分布PSVM的广义特征值分解模型.通过人工数据集和UCI数据集的10个数据子集上的对比实验,验证了该改进分类模型能够有效调整决策边界,从而获得更好的分类效果. 展开更多
关键词 最接近支持向量机 优化样本分布 正则化技术
在线阅读 下载PDF
用于在线数据分类的半监督最接近支持向量机
4
作者 常志勇 刘叶青 谷明涛 《计算机工程与应用》 CSCD 北大核心 2010年第29期219-220,241,共3页
为了解决当已分类完未标号样本,又有新的未标号样本的半监督学习问题,提出了能用于在线数据分类的半监督最接近支持向量机。在人工数据和UCI数据集上的实验显示,不因标号数据的增多而提高分类性能,未标号数据基本上不降低其分类性能,因... 为了解决当已分类完未标号样本,又有新的未标号样本的半监督学习问题,提出了能用于在线数据分类的半监督最接近支持向量机。在人工数据和UCI数据集上的实验显示,不因标号数据的增多而提高分类性能,未标号数据基本上不降低其分类性能,因此算法可在线使用。 展开更多
关键词 支持向量 半监督学习 最接近支持向量机 分类 在线学习
在线阅读 下载PDF
基于主次原型超平面最接近支持向量机
5
作者 马波 王正群 +1 位作者 侯艳平 沈洁 《计算机工程与科学》 CSCD 北大核心 2009年第1期148-150,共3页
基于广义特征值的最接近支持向量机GEPSVM是一种新的具有与SVM性能相当的两类分类方法,通过求解广义特征值来获得两个彼此不平行的拟合两类样本的超平面,其决策规则是将测试样本归为距其最近的超平面所在的类。然而,该规则在某些情形会... 基于广义特征值的最接近支持向量机GEPSVM是一种新的具有与SVM性能相当的两类分类方法,通过求解广义特征值来获得两个彼此不平行的拟合两类样本的超平面,其决策规则是将测试样本归为距其最近的超平面所在的类。然而,该规则在某些情形会导致较差的分类结果。对此,本文提出了在利用GEPSVM产生一个主原型超平面的基础上,再利用主原型超平面及它类样本的信息构造一个次原型超平面,形成一个由主次原型超平面共同决策的最接近支持向量机。该方法不仅简单且易于实现,而且具有较GEPSVM更优的分类性能。在UCI数据集上的实验验证了它的有效性。 展开更多
关键词 最接近支持向量机 广义特征值 原型超平面
在线阅读 下载PDF
马氏度量下局部化广义特征值最接近支持向量机 被引量:1
6
作者 周健航 杨绪兵 +2 位作者 张福全 业巧林 许等平 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期65-71,共7页
局部化广义特征值最接近支持向量机(Localized GEPSVM,LGEPSVM)是从广义特征值最接近支持向量机(GEPSVM:Proximal Support Vector Machine via Generalized Eigenvalues)衍生而来,其原理是在GEPSVM通过求解广义特征值获得两个彼此不平... 局部化广义特征值最接近支持向量机(Localized GEPSVM,LGEPSVM)是从广义特征值最接近支持向量机(GEPSVM:Proximal Support Vector Machine via Generalized Eigenvalues)衍生而来,其原理是在GEPSVM通过求解广义特征值获得两个彼此不平行的超平面的基础上,分别求解两个超平面的凸壳,修改GEPSVM的分类判据为将测试样本归为距其最近凸壳所属的那一类.分析和实验表明,LGEPSVM较之GEPSVM具有更高的分类精度.然而,由于LGEPSVM在训练和分类过程中都涉及凸壳计算问题,因而费时较多.为了缓解这一问题,本文提出的基于马氏度量的最小椭圆凸壳算法MLGEPSVM(LGEPSVM based on Mahalanobis Metric),即分类时只需要判断样本与对应椭圆凸壳的距离.较之LGEPSVM和GEPSVM,MLGEPSVM具有如下几个特点:(1)给出了马氏度量下的椭圆凸壳计算方法,(2)分类速度更快,(3)更低的存储空间,每类样本仅需存储椭圆凸壳(可通过中心和协方差表示),而不是所有的凸壳顶点.在人工和标准数据集上的实验,验证了MLGEPSVM的上述性能. 展开更多
关键词 最接近支持向量机 广义特征值 马氏度量 凸壳
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部