期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向非高斯噪声干扰和拒绝服务攻击下的电力系统状态估计方法
1
作者 巫春玲 郑克军 +1 位作者 卢勇 孟锦豪 《电网技术》 北大核心 2025年第7期2895-2905,I0067-I0070,共15页
随着传统电网逐步发展为电力信息物理系统,不可避免会受到非高斯噪声干扰以及随机发生的拒绝服务(denial of service,DoS)攻击,都会导致传统卡尔曼滤波算法在电力系统状态估计时存在估计精度低的问题。为此,该文利用DoS攻击补偿策略重... 随着传统电网逐步发展为电力信息物理系统,不可避免会受到非高斯噪声干扰以及随机发生的拒绝服务(denial of service,DoS)攻击,都会导致传统卡尔曼滤波算法在电力系统状态估计时存在估计精度低的问题。为此,该文利用DoS攻击补偿策略重构了电力系统模型,并提出柯西核最小误差熵容积卡尔曼滤波(Cauchy kernel minimum error entropy cubature Kalman filter,CKMEE-CKF)算法用于电力系统的动态状态估计。所提出的算法基于统计线性化方法构建的增广模型,运用最小误差熵(minimum error entropy,MEE)作为最优准则,将状态误差和测量误差同时合并到MEE代价函数中。同时,用对核宽度不敏感的柯西核取代MEE中的高斯核函数,大大简化了核宽度的选择难度,有效避免了Cholesky分解的奇异性。然后,采用不动点迭代算法递归更新估计。最后,在IEEE-30节点系统和IEEE-118节点系统中,分别运用所提出CKMEE-CKF算法和CKF、MEE-CKF算法在各种噪声环境和DoS攻击下对电力系统进行状态估计。以IEEE-30节点系统电压幅值估计的均方根误差为例,与CKF、MEE-CKF算法相比,实验结果表明,新算法在第3种非高斯噪声干扰下,估计精度分别提高88%、60%;在第1种DoS攻击下,估计精度分别提高91%、70%。可见在非高斯噪声干扰和DoS攻击情况下,新算法的估计精度有显著性提高,是一种有效的电力系统状态估计方法。 展开更多
关键词 电力信息物理系统 非高斯噪声 DOS攻击 柯西核 最小误差熵 电力系统动态状态估计
在线阅读 下载PDF
基于最大相关熵准则的网络流量预测 被引量:5
2
作者 曲桦 马文涛 +1 位作者 赵季红 王涛 《高技术通讯》 CAS CSCD 北大核心 2013年第1期1-7,共7页
为提高网络流量预测的精度,针对网络流量的非线性特征提出了一种基于新的误差评价准则——最大相关熵准则(MCC)的网络流量预测方法。该方法使用MCC对Elman神经网络进行训练。该评价准则是基于新的相似度函数——广义相关熵(corrent... 为提高网络流量预测的精度,针对网络流量的非线性特征提出了一种基于新的误差评价准则——最大相关熵准则(MCC)的网络流量预测方法。该方法使用MCC对Elman神经网络进行训练。该评价准则是基于新的相似度函数——广义相关熵(corrent.ropy)函数的概念建立的,此相似度函数以误差概率密度函数的Parzen窗估计和瑞利熵为基础。同时结合MCC和最小均方误差(MMSE)准则提出了一种混合的评价准则MCC-MMSE。针对网络流量的非线性、非高斯性、突变性等特性,分别以MCC、MCC-MMSE准则进行了Elman神经网络的训练,使用训练好的神经网络进行网络流量预测,仿真结果表明预测结果的精度优于以MMSE为准则的Elman神经网络的预测结果。 展开更多
关键词 最大相关准则(MCC) 最小均方误差(MMSE) Elman神经网络 网络流量 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部