针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维...针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。展开更多
[目的]本研究将FASTmrEMMA、最小角回归(least angle regression,LARS)和随机森林(random forest,RF)方法应用于全基因组选择,以提高植物数量性状预测的准确性和效率,为植物遗传和育种提供有益信息。[方法]对拟南芥自然群体的模拟数据...[目的]本研究将FASTmrEMMA、最小角回归(least angle regression,LARS)和随机森林(random forest,RF)方法应用于全基因组选择,以提高植物数量性状预测的准确性和效率,为植物遗传和育种提供有益信息。[方法]对拟南芥自然群体的模拟数据和真实数据进行全基因组预测。在模拟数据分析中,设置不同的表型缺失率,以平均绝对误差(mean absolute error,MAE)、均方误差(mean squared error,MSE)、预测模型拟合度和计算时间为指标,比较基于最小角回归和随机森林的两阶段算法(two-stage algorithm based on least angle regression and random forest,TSLRF)、基于随机森林的两阶段变量选择(two-stage stepwise variable selection based on random forest,TSRF)、随机森林和全基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)4种方法的优劣。在拟南芥真实数据研究中,针对长日照花期(days to flowering under long day,LD)、春化长日照花期(days to flowering under long day with vernalization,LDV)和短日照花期(days to flowering under short day,SD)实施全基因组预测,并利用这些表型预测值与观测值进行全基因组关联分析,以比较上述4种全基因组选择方法的性能。[结果]模拟研究表明:在不同表型缺失率下,TSLRF的全基因组预测准确度和预测模型拟合度均较高;真实数据的TSLRF分析也获得相似的结论,且检测到40个已报道与目标性状显著关联的基因。[结论]TSLRF方法的全基因组预测准确度和模型拟合度较高,计算速度快,为分子育种和优异亲本组合的预测提供理论依据。展开更多
文摘针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。
文摘[目的]本研究将FASTmrEMMA、最小角回归(least angle regression,LARS)和随机森林(random forest,RF)方法应用于全基因组选择,以提高植物数量性状预测的准确性和效率,为植物遗传和育种提供有益信息。[方法]对拟南芥自然群体的模拟数据和真实数据进行全基因组预测。在模拟数据分析中,设置不同的表型缺失率,以平均绝对误差(mean absolute error,MAE)、均方误差(mean squared error,MSE)、预测模型拟合度和计算时间为指标,比较基于最小角回归和随机森林的两阶段算法(two-stage algorithm based on least angle regression and random forest,TSLRF)、基于随机森林的两阶段变量选择(two-stage stepwise variable selection based on random forest,TSRF)、随机森林和全基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)4种方法的优劣。在拟南芥真实数据研究中,针对长日照花期(days to flowering under long day,LD)、春化长日照花期(days to flowering under long day with vernalization,LDV)和短日照花期(days to flowering under short day,SD)实施全基因组预测,并利用这些表型预测值与观测值进行全基因组关联分析,以比较上述4种全基因组选择方法的性能。[结果]模拟研究表明:在不同表型缺失率下,TSLRF的全基因组预测准确度和预测模型拟合度均较高;真实数据的TSLRF分析也获得相似的结论,且检测到40个已报道与目标性状显著关联的基因。[结论]TSLRF方法的全基因组预测准确度和模型拟合度较高,计算速度快,为分子育种和优异亲本组合的预测提供理论依据。