期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于LASSO算法的光谱变量选择方法研究 被引量:8
1
作者 王恺怡 杨盛 +1 位作者 郭彩云 卞希慧 《分析测试学报》 CAS CSCD 北大核心 2022年第3期398-402,408,共6页
光谱分析技术由于具有简单、快速、无损等优势,在复杂体系的定性和定量分析中得到了广泛应用。然而光谱中往往包含成百上千的波长点,有些波长点与研究的目标性质并不相关,加大了计算量并降低了模型的预测准确度。因此,在建立模型前需要... 光谱分析技术由于具有简单、快速、无损等优势,在复杂体系的定性和定量分析中得到了广泛应用。然而光谱中往往包含成百上千的波长点,有些波长点与研究的目标性质并不相关,加大了计算量并降低了模型的预测准确度。因此,在建立模型前需要进行变量选择。最小绝对收缩与选择算子(LASSO)可将回归系数收缩为0,进而达到变量选择的目的。该研究将LASSO用于三元调和油样品近红外光谱和生物样品拉曼光谱的变量选择,基于偏最小二乘(PLS)和多元线性回归(MLR)模型,分别对香油和肌氨酸的含量进行定量分析,并与无信息变量消除-PLS(UVE-PLS)、蒙特卡罗结合UVE-PLS(MCUVE-PLS)和随机检验-PLS(RT-PLS)3种变量选择方法进行比较。结果表明,基于LASSO的变量选择方法保留的变量数最少,运算速度最快。对三元调和油样品,LASSO-PLS预测的准确度最高;对生物样品,LASSO-MLR预测的准确度最高。因此,基于LASSO的变量选择算法有望在光谱分析领域中得到良好应用。 展开更多
关键词 多元校正 变量选择 最小绝对收缩选择算子(lasso) 光谱分析
在线阅读 下载PDF
基于变量选择-神经网络模型的复杂路网短时交通流预测 被引量:13
2
作者 蒋士正 许榕 陈启美 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第2期281-286,共6页
针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的... 针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso-NN组合模型.结果表明:Lasso-NN模型在路网交叉口对未来15min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果. 展开更多
关键词 短时交通流预测 最小绝对收缩和选择算子 变量选择 神经网络
在线阅读 下载PDF
基于增量学习和Lasso融合的数据可视化模式识别方法 被引量:4
3
作者 梁怀新 郝连旺 +2 位作者 宋佳霖 郑存芳 洪文学 《高技术通讯》 EI CAS 北大核心 2018年第1期39-51,共13页
提出了一种基于增量学习和最小绝对值收缩和选择算子(Lasso)特征选择融合的数据可视化模式识别方法。该方法首先对归一化数据进行一级Lasso筛选特征降维,之后对连续数据进行基于Gini指数的粒化,再送入增量模式学习系统进行增量学习,针... 提出了一种基于增量学习和最小绝对值收缩和选择算子(Lasso)特征选择融合的数据可视化模式识别方法。该方法首先对归一化数据进行一级Lasso筛选特征降维,之后对连续数据进行基于Gini指数的粒化,再送入增量模式学习系统进行增量学习,针对维数大量升高的情况进行Lasso二级特征筛选生成一致模式决策表,生成属性偏序结构图可视化规则发现。数据采用来自UCI的5个数据库,并与分类器KNN,SVM,Adaboost,Random Forest进行分类准确度比较,实验表明,基于该算法的分类精度普遍高于其他分类器水平,且属性偏序结构图可视化层次清晰鲜明。通过增量学习实验设计,得到了准确率、图结构更新和不同比例增量数据的动态关系,其中Pima Indians Diabetes数据学习达到40%时准确率(77.66%)超过Adaboost(75.32%)、SVM(77.27%)、1NN(59.74%)、3NN(75.97%)算法。结果表明该算法进行数据的可视化和模式识别是行之有效的。 展开更多
关键词 增量学习 最小绝对值收缩和选择算子(lasso) 属性偏序结构图 可视化 模式识别 粒化
在线阅读 下载PDF
针对发动机平面度的二维FusedLASSO多元统计控制图 被引量:1
4
作者 陆永婷 李艳婷 《工业工程》 2015年第3期127-133,共7页
针对具有二维平面自然顺序关系的多元数据,提出了一种基于二维Fused LASSO回归模型的多元统计过程控制图。由于二维Fused LASSO多元回归模型对相邻系数的差异进行惩罚,因此它对检测出变量间的自然顺序关系非常有效。通过数值仿真实验可... 针对具有二维平面自然顺序关系的多元数据,提出了一种基于二维Fused LASSO回归模型的多元统计过程控制图。由于二维Fused LASSO多元回归模型对相邻系数的差异进行惩罚,因此它对检测出变量间的自然顺序关系非常有效。通过数值仿真实验可以看到,二维Fused LASSO控制图能更加快速有效地检测出具有二维平面自然顺序的多元过程中均值发生的变化,且在偏移量越大的情况下优势更加明显。最后通过对发动机平面度数据的实例验证,给出了二维Fused LASSO控制图的步骤和适用性。 展开更多
关键词 二维平面 多元统计过程控制图(MSPC) 模糊型最小绝对值压缩与选择法(Fused lasso) 平面度
在线阅读 下载PDF
基于Nomogram模型鉴别肺腺癌病理亚型的临床价值
5
作者 王朝晖 岳军艳 《医学影像学杂志》 2024年第8期50-53,共4页
目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明... 目的 探讨基于最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析构建Nomogram模型预测原位腺癌(AIS)、微浸润腺癌(MIA)及浸润性腺癌(IAC)的价值。方法 选取本院97例经手术病理证实且病理亚型明确的肺腺癌患者,将AIS和MIA归为第1组,IAC为第2组,比较两组患者年龄、性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征差异,采用3D Slicer软件进行图像分割,特征提取与选择,通过LASSO算法对特征进行降维,筛选影像组学特征构建预测模型。再采用R软件的rms工具包构建Nomogram模型,计算ROC曲线下面积(AUC),以评价Nomogram模型鉴别肺磨玻璃结节病理亚型的效能。结果 1)性别、吸烟史、长径、短径及免疫组化Ki-67等临床医学特征均差异无统计学意义(P>0.05);2)筛选7个CT影像组学特征:平面度、大依赖低灰度强调、小波变换LHL第十百分位、小波变换HLL第十百分位、小波变换最小值、小波变换均值及小依赖低灰度强度比较,差异均有统计学意义(P均<0.05);3)基于CT影像组学特征建立预测肺磨玻璃结节病理亚型的Nomogram模型,训练集中AUC为0.863,准确率为87.9%,灵敏度为67.9%,特异度为91.1%;验证集中AUC为0.792,准确率为75.0%,灵敏度为66.7%,特异度为90.5%,可见此Nomogram模型具有较好的预测效能。结论 对于预测肺腺癌浸润程度,Nomogram模型具有明显优势,可作为一种鉴别手段。 展开更多
关键词 肺磨玻璃结节 最小绝对收缩和选择算子 Nomogram模型 病理亚型 体层摄影术 X线计算机
在线阅读 下载PDF
早期帕金森病诊断评分模型构建及效能验证
6
作者 汪国宏 王玉婷 +2 位作者 王亚奇 胡婉华 夏仕勇 《山东医药》 CAS 2024年第19期15-19,共5页
目的构建早期帕金森病(PD)的诊断评分模型,并验证其效能。方法选择PD患者75例及性别、年龄与PD患者相匹配的健康志愿者75例,随机分为验证组(PD患者38例、健康志愿者37例)与训练组(PD患者37例、健康志愿者38例)。收集受试者病历资料。用... 目的构建早期帕金森病(PD)的诊断评分模型,并验证其效能。方法选择PD患者75例及性别、年龄与PD患者相匹配的健康志愿者75例,随机分为验证组(PD患者38例、健康志愿者37例)与训练组(PD患者37例、健康志愿者38例)。收集受试者病历资料。用最小绝对收缩和选择算子(LASSO)算法,通过十折交叉验证确定最优参数,从训练组相关资料中筛选出具有相关性的诊断因子,并根据各因子系数构建诊断评分模型。通过Logistic回归构建列线图;绘制受试者工作特征曲线,通过曲线下面积和校准曲线评价该模型的诊断效能以及拟合度。结果训练组与验证组相关资料比较差异无统计学意义(P均>0.05)。训练组经LASSO算法确定最佳参数λ=0.052,筛选出具鉴别能力的7个指标,诊断评分模型公式=-1.048+0.961×睡眠行为障碍筛查问卷(RBDSQ)评分+0.079×汉密尔顿焦虑量表14项(HAMA-14)评分-0.0002×神经元特异性烯醇化酶(NSE)-0.011×血管内皮生长因子(VEGF)-0.001×尿酸-0.046×各向异性(FA)+0.003×舒张末期血流速度(DFV)。多因素Logistic回归分析确认所筛选的7个指标可作为早期PD患者的独立诊断因子。在验证组中该诊断评分模型用于诊断早期PD患者的曲线下面积为0.91,高于7个因子单独诊断早期PD的曲线下面积;拟合曲线显示该模型有较好的拟合优度。结论基于RBDSQ评分、HAMA-14评分、VEGF、FA、NSE、尿酸及DFV构建了早期PD的诊断评分模型,该模型有较高的诊断效能。 展开更多
关键词 帕金森病 早期 最小绝对收缩和选择算子 诊断评分模型 诊断效能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部