期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于最小样本平面距离的支持向量机增量学习算法
被引量:
3
1
作者
朱发
业宁
+1 位作者
潘冬寅
丁文
《计算机工程与设计》
CSCD
北大核心
2012年第1期346-350,共5页
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练。Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,...
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练。Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,而这样的最近邻样本中可能存在冗余样本。根据历史样本与分类平面间的距离可以去除新增样本最近邻样本集中的冗余样本。根据样本平面距离提出了MSPDISVM(minimum sample plane distance incremental support vector ma-chines)算法。实验结果表明,MSPDISVM比Liva Ralaivola提出的算法有更快的速度,而精度没有太大的差异。使用样本平面距离可以有效地去除新增样本最近邻中的冗余样本。
展开更多
关键词
支持
向量
机
增量
学习
样本
距离
样本
平面
距离
最小样本平面距离支持向量机增量学习算法
在线阅读
下载PDF
职称材料
题名
基于最小样本平面距离的支持向量机增量学习算法
被引量:
3
1
作者
朱发
业宁
潘冬寅
丁文
机构
南京林业大学信息科学与技术学院
出处
《计算机工程与设计》
CSCD
北大核心
2012年第1期346-350,共5页
基金
江苏省自然基金项目(BK2009393)
江苏省青蓝工程学术带头人基金项目(BK2009393)
文摘
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练。Liva Ralaivola[1]提出保留新增样本最近邻样本来表示历史样本集,而这样的最近邻样本中可能存在冗余样本。根据历史样本与分类平面间的距离可以去除新增样本最近邻样本集中的冗余样本。根据样本平面距离提出了MSPDISVM(minimum sample plane distance incremental support vector ma-chines)算法。实验结果表明,MSPDISVM比Liva Ralaivola提出的算法有更快的速度,而精度没有太大的差异。使用样本平面距离可以有效地去除新增样本最近邻中的冗余样本。
关键词
支持
向量
机
增量
学习
样本
距离
样本
平面
距离
最小样本平面距离支持向量机增量学习算法
Keywords
support vector machine; incremental learning; sample distance; sample plane distance; MSPDISVM
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于最小样本平面距离的支持向量机增量学习算法
朱发
业宁
潘冬寅
丁文
《计算机工程与设计》
CSCD
北大核心
2012
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部