为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置...为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置估计量的线性模型,并求取误差加权矩阵、系数矩阵及协方差矩阵等参数;然后采用加权最小二乘法对最终位置进行最优无偏估计,同时推导出定位误差的最小方差阵。仿真实验结果表明,在相同环境下该算法的定位精度优于Chan和Taylor算法,同时显著减小了算法的运算量。展开更多
基金国家高技术研究发展计划(863)(the National High- Tech Research and Development Plan of China under Grant No.2005AA611020)
文摘最小方差谱估计方法(MVM)是声纳信号波达方向估计中一种十分重要的方法,然而工程实际应用中在小快拍数和低信噪比的场合最小方差谱估计方法的估计性能会受到很大影响。提出的基于时空相关信号协方差矩阵的最小方差谱估计算法(MVMBased on Time-Space Correlation Matrix)利用噪声在空间和时间上的相关性比较弱的特点大大改善了MVM在小快拍数和低信噪比场合的估计性能。基于时空相关信号协方差矩阵的最小方差谱估计算法应用到浅水高分辨率测深侧扫声纳的波达方向估计中,取得了比原始信号协方差矩阵的最小方差谱估计算法更好的效果。算法中的时空相关信号协方差矩阵构成方法在波达方向估计中有广泛的应用价值。
文摘为了减小到达时间差(time difference of arrival,TDOA)方法在定位过程中存在的系统测量噪声和非视距误差,提出了一种基于最优线性无偏估计的TDOA定位算法。该方法首先利用Chan算法计算定位初始位置,在初始位置处泰勒级数展开得到位置估计量的线性模型,并求取误差加权矩阵、系数矩阵及协方差矩阵等参数;然后采用加权最小二乘法对最终位置进行最优无偏估计,同时推导出定位误差的最小方差阵。仿真实验结果表明,在相同环境下该算法的定位精度优于Chan和Taylor算法,同时显著减小了算法的运算量。