针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了...针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了泡沫浮选矿浆酸碱度的软测量.将不同特性的核函数凸组合以提高模型性能,并采用最近邻山峰聚类算法约简核矩阵,降低计算复杂度,利用偏最小二乘回归提高模型鲁棒性.工业运行数据仿真结果表明,建立的软测量模型能够连续在线检测矿浆的酸碱度,并获得了比标准LSSVR、加权LSSVR及多核LSSVR更高的预测精度,可满足工业要求.展开更多
针对电力系统年用电量增长的特点,将最小二乘支持向量机LS-SVM(least squares support vector m a-ch ine)回归模型引入年电力需求预测领域,并给出了相应的过程和算法。与常规基于人工神经网络ANN(ar-tific ial neural networks)的智能...针对电力系统年用电量增长的特点,将最小二乘支持向量机LS-SVM(least squares support vector m a-ch ine)回归模型引入年电力需求预测领域,并给出了相应的过程和算法。与常规基于人工神经网络ANN(ar-tific ial neural networks)的智能预测方法比较,该模型优点是明显的:1)将神经网络迭代学习问题转化为直接求解多元线性方程;2)整个训练过程中有且仅有一个全局极值点,确定了预测的稳定性;3)将年电力需求预测的外插回归问题转换为内插问题,提高了预测精度。应用实例表明:该模型实现容易、预测精度高,更适合年电力需求预测。展开更多
文摘针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了泡沫浮选矿浆酸碱度的软测量.将不同特性的核函数凸组合以提高模型性能,并采用最近邻山峰聚类算法约简核矩阵,降低计算复杂度,利用偏最小二乘回归提高模型鲁棒性.工业运行数据仿真结果表明,建立的软测量模型能够连续在线检测矿浆的酸碱度,并获得了比标准LSSVR、加权LSSVR及多核LSSVR更高的预测精度,可满足工业要求.
文摘针对电力系统年用电量增长的特点,将最小二乘支持向量机LS-SVM(least squares support vector m a-ch ine)回归模型引入年电力需求预测领域,并给出了相应的过程和算法。与常规基于人工神经网络ANN(ar-tific ial neural networks)的智能预测方法比较,该模型优点是明显的:1)将神经网络迭代学习问题转化为直接求解多元线性方程;2)整个训练过程中有且仅有一个全局极值点,确定了预测的稳定性;3)将年电力需求预测的外插回归问题转换为内插问题,提高了预测精度。应用实例表明:该模型实现容易、预测精度高,更适合年电力需求预测。